MULTIDIMENSIONAL STABILITY OF PLANAR TRAVELING WAVES FOR THE SCALAR NONLOCAL ALLEN-CAHN EQUATION

被引:6
|
作者
Faye, Gregory [1 ,2 ]
机构
[1] CAMS Ecole Hautes Etud Sci Soci, F-75013 Paris, France
[2] CNRS, UMR 5219, Inst Math Toulouse, F-31062 Toulouse, France
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
Nonlocal equation; traveling wave; nonlinear stability; REACTION-DIFFUSION EQUATION; VISCOUS CONSERVATION-LAWS; ASYMPTOTIC-BEHAVIOR; EVOLUTION-EQUATIONS; SPECTRAL-ANALYSIS; MODEL;
D O I
10.3934/dcds.2016.36.2473
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the multidimensional stability of planar traveling waves for scalar nonlocal Allen-Cahn equations using semigroup estimates. We show that if the traveling wave is spectrally stable in one space dimension, then it is stable in n-space dimension, n >= 2, with perturbations of the traveling wave decaying like t(-(n-1)/4) as t -> +infinity in H-k(R-n) for k >= [n+1/2].
引用
收藏
页码:2473 / 2496
页数:24
相关论文
共 50 条
  • [21] Slow motion for the nonlocal Allen-Cahn equation in n dimensions
    Murray, Ryan
    Rinaldi, Matteo
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (06)
  • [22] Stability and convergence of Strang splitting. Part I: Scalar Allen-Cahn equation
    Li, Dong
    Quan, Chaoyu
    Xu, Jiao
    Journal of Computational Physics, 2022, 458
  • [23] Global stability of traveling curved fronts in the Allen-Cahn equations
    Ninomiya, H
    Taniguchi, M
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2006, 15 (03) : 819 - 832
  • [24] The stability of the equilibria of the Allen-Cahn equation with fractional diffusion
    Cheng, Hongmei
    Yuan, Rong
    APPLICABLE ANALYSIS, 2019, 98 (03) : 600 - 610
  • [25] On the stability of the saddle solution of Allen-Cahn's equation
    Schatzman, M
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1995, 125 : 1241 - 1275
  • [26] A generalization of the Allen-Cahn equation
    Miranville, Alain
    Quintanilla, Ramon
    IMA JOURNAL OF APPLIED MATHEMATICS, 2015, 80 (02) : 410 - 430
  • [27] Analytical and numerical investigation of traveling waves for the Allen-Cahn model with relaxation
    Lattanzio, Corrado
    Mascia, Corrado
    Plaza, Ramon G.
    Simeoni, Chiara
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (05): : 931 - 985
  • [28] Generation, motion and thickness of transition layers for a nonlocal Allen-Cahn equation
    Alfaro, Matthieu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (7-8) : 3324 - 3336
  • [29] Analysis and numerical methods for nonlocal-in-time Allen-Cahn equation
    Li, Hongwei
    Yang, Jiang
    Zhang, Wei
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (06)
  • [30] Asymptotics for the Fractional Allen-Cahn Equation and Stationary Nonlocal Minimal Surfaces
    Millot, Vincent
    Sire, Yannick
    Wang, Kelei
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 231 (02) : 1129 - 1216