MULTIDIMENSIONAL STABILITY OF PLANAR TRAVELING WAVES FOR THE SCALAR NONLOCAL ALLEN-CAHN EQUATION

被引:6
|
作者
Faye, Gregory [1 ,2 ]
机构
[1] CAMS Ecole Hautes Etud Sci Soci, F-75013 Paris, France
[2] CNRS, UMR 5219, Inst Math Toulouse, F-31062 Toulouse, France
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
Nonlocal equation; traveling wave; nonlinear stability; REACTION-DIFFUSION EQUATION; VISCOUS CONSERVATION-LAWS; ASYMPTOTIC-BEHAVIOR; EVOLUTION-EQUATIONS; SPECTRAL-ANALYSIS; MODEL;
D O I
10.3934/dcds.2016.36.2473
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the multidimensional stability of planar traveling waves for scalar nonlocal Allen-Cahn equations using semigroup estimates. We show that if the traveling wave is spectrally stable in one space dimension, then it is stable in n-space dimension, n >= 2, with perturbations of the traveling wave decaying like t(-(n-1)/4) as t -> +infinity in H-k(R-n) for k >= [n+1/2].
引用
收藏
页码:2473 / 2496
页数:24
相关论文
共 50 条