Experimental study of flow separation control on a low-Re airfoil using leading-edge protuberance method

被引:75
|
作者
Zhang, M. M. [1 ]
Wang, G. F. [1 ]
Xu, J. Z. [1 ]
机构
[1] Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
LOW-REYNOLDS-NUMBER; AERODYNAMICS; PERFORMANCE; TUBERCLES; BLOCKAGE;
D O I
10.1007/s00348-014-1710-z
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
An experimental study of flow separation control on a low-Rec airfoil was presently investigated using a newly developed leading-edge protuberance method, motivated by the improvement in the hydrodynamics of the giant humpback whale through its pectoral flippers. Deploying this method, the control effectiveness of the airfoil aerodynamics was fully evaluated using a three-component force balance, leading to an effectively impaired stall phenomenon and great improvement in the performances within the wide post-stall angle range (22 degrees-80 degrees). To understand the flow physics behind, the vorticity field, velocity field and boundary layer flow field over the airfoil suction side were examined using a particle image velocimetry and an oil-flow surface visualization system. It was found that the leading-edge protuberance method, more like low-profile vortex generator, effectively modified the flow pattern of the airfoil boundary layer through the chordwise and spanwise evolutions of the interacting streamwise vortices generated by protuberances, where the separation of the turbulent boundary layer dominated within the stall region and the rather strong attachment of the laminar boundary layer still existed within the post-stall region. The characteristics to manipulate the flow separation mode of the original airfoil indicated the possibility to further optimize the control performance by reasonably designing the layout of the protuberances.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Leading-edge flow separation control over an airfoil using a symmetrical dielectric barrier discharge plasma actuator
    Xin ZHANG
    Huaxing LI
    Yong HUANG
    Kun TANG
    Wanbo WANG
    Chinese Journal of Aeronautics, 2019, 32 (05) : 1190 - 1203
  • [22] Leading-edge flow separation control over an airfoil using a symmetrical dielectric barrier discharge pasma actuator
    Zhang, Xin
    Li, Huaxing
    Huang, Yong
    Tang, Kun
    Wang, Wanbo
    CHINESE JOURNAL OF AERONAUTICS, 2019, 32 (05) : 1190 - 1203
  • [23] Experimental and numerical study of laminar separation bubble formation on low Reynolds number airfoil with leading-edge tubercles
    Sreejith, B. K.
    Sathyabhama, A.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2020, 42 (04)
  • [24] Dynamic mode decomposition analysis of flow separation control on wind turbine airfoil using leading-edge rod
    Zhong, Junwei
    Li, Jingyin
    Liu, Huizhong
    ENERGY, 2023, 268
  • [25] Experimental and numerical study of laminar separation bubble formation on low Reynolds number airfoil with leading-edge tubercles
    B. K. Sreejith
    A. Sathyabhama
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42
  • [26] Experimental quantification of unsteady leading-edge flow separation
    Deparday, Julien
    He, Xiaowei
    Eldredge, Jeff D.
    Mulleners, Karen
    Williams, David R.
    JOURNAL OF FLUID MECHANICS, 2022, 941
  • [27] Control of Poststall Airfoil Using Leading-Edge Pulsed Jets
    Hipp, Kyle D.
    Walker, Michael M.
    Benton, Stuart I.
    Bons, Jeffrey P.
    AIAA JOURNAL, 2017, 55 (02) : 365 - 376
  • [28] NUMERICAL STUDY OF UNSTEADY LEADING-EDGE SEPARATION BUBBLE ON AN OSCILLATING AIRFOIL
    KRESKOVSKY, JP
    SHAMROTH, SJ
    BRILEY, WR
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1977, 11 (01) : 39 - 56
  • [29] Experimental and Numerical Investigation on the Flow Near the Leading-Edge of Controlled Diffusion Airfoil
    Liu, Bao-Jie
    Xu, Xiao-Bin
    Yu, Xian-Jun
    Zhu, Hong-Wei
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2019, 40 (08): : 1767 - 1774
  • [30] Dynamic Roughness as a Means of Leading-Edge Separation Flow Control
    Huebsch, W. W.
    Gall, P. D.
    Hamburg, S. D.
    Rothmayer, A. P.
    JOURNAL OF AIRCRAFT, 2012, 49 (01): : 108 - 115