Markovianizing Cost of Tripartite Quantum States

被引:15
|
作者
Wakakuwa, Eyuri [1 ]
Soeda, Akihito [2 ]
Murao, Mio [2 ,3 ]
机构
[1] Univ Electrocommun, Grad Sch Informat & Engn, Dept Commun Engn & Informat, Tokyo 1828585, Japan
[2] Univ Tokyo, Grad Sch Sci, Dept Phys, Tokyo 1130033, Japan
[3] Univ Tokyo, Inst Nano Quantum Informat Elect, Tokyo 1130033, Japan
关键词
Quantum Markov chain; random unitary operations; ENTROPY; INFORMATION;
D O I
10.1109/TIT.2016.2639523
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce and analyze a task that we call Markovianization, in which a tripartite quantum state is transformed to a quantum Markov chain by a randomizing operation on one of the three subsystems. We consider cases where the initial state is the tensor product of n copies of a tripartite state rho(ABC), and is transformed to a quantum Markov chain conditioned by B-n with a small error, using a random unitary operation on A(n). In an asymptotic limit of infinite copies and vanishingly small error, we analyze the Markovianizing cost, that is, the minimum cost of randomness per copy required for Markovianization. For tripartite pure states, we derive a single-letter formula for the Markovianizing costs. Counterintuitively, the Markovianizing cost is not a continuous function of states, and can be arbitrarily large even if the state is close to a quantum Markov chain. Our results have an application in analyzing the cost of resources for simulating a bipartite unitary gate by local operations and classical communication.
引用
收藏
页码:1280 / 1298
页数:19
相关论文
共 50 条
  • [21] Separability of Tripartite Quantum States with Strong Positive Partial Transposes
    Yu, Xin-Yu
    Zhao, Hui
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (01) : 292 - 301
  • [22] Quantum correlations of tripartite entangled states under Gaussian noise
    Atta Ur Rahman
    Muhammad Noman
    Muhammad Javed
    Ming-Xing Luo
    Arif Ullah
    [J]. Quantum Information Processing, 2021, 20
  • [23] Separability of Tripartite Quantum States with Strong Positive Partial Transposes
    Xin-Yu Yu
    Hui Zhao
    [J]. International Journal of Theoretical Physics, 2015, 54 : 292 - 301
  • [24] Equivalence of tripartite quantum states under local unitary transformations
    Albeverio, S
    Cattaneo, L
    Fei, SM
    Wang, XH
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2005, 3 (04) : 603 - 609
  • [25] Protecting quantum entanglement and nonlocality for tripartite states under decoherence
    Zhang, Rui
    Yin, Yu Hao
    Ma, Wen Chao
    Ye, Liu
    [J]. MODERN PHYSICS LETTERS B, 2016, 30 (17):
  • [26] Tripartite quantum deterministic key distribution based on GHZ states
    Zhou Nan-Run
    Song Han-Chong
    Gong Li-Hua
    Liu Ye
    [J]. ACTA PHYSICA SINICA, 2012, 61 (21)
  • [27] A SECURE QUANTUM COMMUNICATION VIA DEFORMED TRIPARTITE COHERENT STATES
    Meslouhi, A.
    Amellal, H.
    Hassouni, Y.
    El Allati, A.
    [J]. JOURNAL OF RUSSIAN LASER RESEARCH, 2014, 35 (04) : 369 - 382
  • [28] Global quantum correlations in tripartite nonorthogonal states and monogamy properties
    Daoud, M.
    Laamara, R. Ahl
    Essaber, R.
    Kaydi, W.
    [J]. PHYSICA SCRIPTA, 2014, 89 (06)
  • [29] Entanglement and quantum teleportation via decohered tripartite entangled states
    Metwally, N.
    [J]. ANNALS OF PHYSICS, 2014, 351 : 704 - 713
  • [30] Schemes for Splitting Quantum Information via Tripartite Entangled States
    Zhang, Qun-Yong
    Zhan, You-Bang
    Zhang, Ling-Ling
    Ma, Peng-Cheng
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (12) : 3331 - 3338