Time evolution of the first-order linear acoustic/elastic wave equation using Lie product formula and Taylor expansion

被引:5
|
作者
Araujo, Edvaldo S. [1 ]
Pestana, Reynam C. [1 ,2 ,3 ]
机构
[1] Fed Univ Bahia UFBA DFTMA, Ctr Res Geophys & Geol CPGG, Rua Barao Geremoabo, Salvador, BA, Brazil
[2] Fed Univ Bahia UFBA DFTMA, Natl Inst Petr Geophys INCT GP, Rua Barao Geremoabo, Salvador, BA, Brazil
[3] INCT GP, Rua Barao Geremoabo, Salvador, BA, Brazil
关键词
Acoustic; Anisotropy; 2D FD modelling; ABSORBING LAYER; PROPAGATION; SCHEME; MEDIA;
D O I
10.1111/1365-2478.13033
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We propose a new numerical solution to the first-order linear acoustic/elastic wave equation. This numerical solution is based on the analytic solution of the linear acoustic/elastic wave equation and uses the Lie product formula, where the time evolution operator of the analytic solution is written as a product of exponential matrices where each exponential matrix term is then approximated by Taylor series expansion. Initially, we check the proposed approach numerically and then demonstrate that it is more accurate to apply a Taylor expansion for the exponential function identity rather than the exponential function itself. The numerical solution formulated employs a recursive procedure and also incorporates the split perfectly matched layer boundary condition. Thus, our scheme can be used to extrapolate wavefields in a stable manner with even larger time-steps than traditional finite-difference schemes. This new numerical solution is examined through the comparison of the solution of full acoustic wave equation using the Chebyshev expansion approach for the matrix exponential term. Moreover, to demonstrate the efficiency and applicability of our proposed solution, seismic modelling results of three geological models are presented and the processing time for each model is compared with the computing time taking by the Chebyshev expansion method. We also present the result of seismic modelling using the scheme based in Lie product formula and Taylor series expansion for the first-order linear elastic wave equation in vertical transversely isotropic and tilted transversely isotropic media as well. Finally, a post-stack migration results are also shown using the proposed method.
引用
收藏
页码:70 / 84
页数:15
相关论文
共 50 条
  • [31] Time-domain response of damped linear structures using first-order GHM finite elements
    McTavish, DJ
    TRANSACTIONS OF THE CANADIAN SOCIETY FOR MECHANICAL ENGINEERING, 2004, 28 (3-4) : 603 - 629
  • [32] CONTROLLABILITY OF THE LINEAR ELASTICITY AS A FIRST-ORDER SYSTEM USING A STABILIZED SPACE-TIME MIXED FORMULATION
    Bottois, Arthur
    Cindea, Nicolae
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2023, 13 (03) : 1081 - 1108
  • [33] A Nonbalanced Staggered-Grid FDTD Scheme for the First-Order Elastic-Wave Extrapolation and Reverse-Time Migration
    Liang, Wenquan
    Chen, Guoxin
    Wang, Yanfei
    Cao, Jingjie
    Chen, Jinxin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 4772 - 4781
  • [34] Least-squares reverse time migration based on first-order velocity-stress wave equation in VTI media
    Guo Xu
    Huang JianPing
    Li ZhenChun
    Huang JinQiang
    Li QingYang
    Zhu Feng
    Liu MengLi
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2019, 62 (06): : 2188 - 2202
  • [35] Output Feedback Stabilization for a Class of First-Order Equation Setting of Collocated Well-Posed Linear Systems With Time Delay in Observation
    Guo, Bao-Zhu
    Mei, Zhan-Dong
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (06) : 2612 - 2618
  • [36] Multi-source least-squares reverse time migration based on first-order velocity-stress wave equation
    Li Qing-Yang
    Huang Jian-Ping
    Li Zhen-Chun
    Yong Peng
    Li Na
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2016, 59 (12): : 4666 - 4676
  • [37] Elastic reverse time migration based on first-order velocity-dilatation-rotation equations using the optical flow vector
    Xie, Chuang
    Wang, Jianhua
    Song, Peng
    Tan, Jun
    Liu, Zhaolun
    Wang, Yandong
    GEOPHYSICS, 2024, 89 (04) : S325 - S337
  • [38] Comparison of Receiver Equalization Using First-Order and Second-Order Continuous-Time Linear Equalizer in 45 nm Process Technology
    Lee, C. H.
    Mustaffa, M. T.
    Chan, K. H.
    2012 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT AND ADVANCED SYSTEMS (ICIAS), VOLS 1-2, 2012, : 795 - 800
  • [39] Plane-wave least-squares reverse time migration based on the first-order velocity-stress equation in anisotropic media
    Zhou D.
    Huang J.
    Li Z.
    Lü D.
    Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban)/Journal of China University of Petroleum (Edition of Natural Science), 2019, 43 (06): : 48 - 58
  • [40] Finite difference methods for second order in space, first order in time hyperbolic systems and the linear shifted wave equation as a model problem in numerical relativity
    Chirvasa, M.
    Husa, S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (07) : 2675 - 2696