Spherically symmetric quantum geometry: states and basic operators

被引:98
|
作者
Bojowald, M [1 ]
机构
[1] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany
关键词
D O I
10.1088/0264-9381/21/15/008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The kinematical setting of spherically symmetric quantum geometry, derived from the full theory of loop quantum gravity, is developed. This extends previous studies of homogeneous models to inhomogeneous ones where interesting field theory aspects arise. A comparison between a reduced quantization and a derivation of the model from the full theory is presented in detail, with an emphasis on the resulting quantum representation. Similar concepts for Einstein-Rosen waves are discussed briefly.
引用
收藏
页码:3733 / 3753
页数:21
相关论文
共 50 条
  • [41] Critical properties of spherically symmetric black hole accretion in Schwarzschild geometry
    Mandal, Ipsita
    Ray, Arnab K.
    Das, Tapas K.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 378 (04) : 1400 - 1406
  • [42] GEOMETRY OF QUANTUM STATES
    BRAUNSTEIN, SL
    CAVES, CM
    FUNDAMENTAL PROBLEMS IN QUANTUM THEORY: A CONFERENCE HELD IN HONOR OF PROFESSOR JOHN A. WHEELER, 1995, 755 : 786 - 797
  • [43] On the geometry of quantum states
    Aguilar, MA
    Socolovsky, M
    WORKSHOPS ON PARTICLES AND FIELDS AND PHENOMENOLOGY OF FUNDAMENTAL INTERACTIONS, 1996, (359): : 495 - 499
  • [45] Quantum Uncertainty and the Spectra of Symmetric Operators
    Martin, R. T. W.
    Kempf, A.
    ACTA APPLICANDAE MATHEMATICAE, 2009, 106 (03) : 349 - 358
  • [46] Quantum Uncertainty and the Spectra of Symmetric Operators
    R. T. W. Martin
    A. Kempf
    Acta Applicandae Mathematicae, 2009, 106 : 349 - 358
  • [47] Basic Operators in Differential Geometry and Conformal Covariance
    Kobayashi, Toshiyuki
    Kubo, Toshihisa
    Pevzner, Michael
    CONFORMAL SYMMETRY BREAKING OPERATORS FOR DIFFERENTIAL FORMS ON SPHERES, 2016, 2170 : 93 - 109
  • [48] Comment on "Towards a quantum notion of covariance in spherically symmetric loop quantum gravity"
    Bojowald, Martin
    PHYSICAL REVIEW D, 2022, 105 (10)
  • [49] An introduction to spherically symmetric loop quantum gravity black holes
    Gambini, Rodolfo
    Pullin, Jorge
    II COSMOSUR: COSMOLOGY AND GRAVITATION IN THE SOUTHERN CONE, 2015, 1647 : 19 - 22
  • [50] Quantum Mechanics of a Spherically Symmetric Causal Diamond in Minkowski Spacetime
    Bub, Mathew W.
    He, Temple
    Mitra, Prahar
    Zhang, Yiwen
    Zurek, Kathryn M.
    PHYSICAL REVIEW LETTERS, 2025, 134 (12)