Spherically symmetric quantum geometry: states and basic operators

被引:98
|
作者
Bojowald, M [1 ]
机构
[1] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany
关键词
D O I
10.1088/0264-9381/21/15/008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The kinematical setting of spherically symmetric quantum geometry, derived from the full theory of loop quantum gravity, is developed. This extends previous studies of homogeneous models to inhomogeneous ones where interesting field theory aspects arise. A comparison between a reduced quantization and a derivation of the model from the full theory is presented in detail, with an emphasis on the resulting quantum representation. Similar concepts for Einstein-Rosen waves are discussed briefly.
引用
收藏
页码:3733 / 3753
页数:21
相关论文
共 50 条
  • [1] Spherically symmetric quantum geometry: Hamiltonian constraint
    Bojowald, Martin
    Swiderski, Rafal
    CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (06) : 2129 - 2154
  • [2] The volume operator in spherically symmetric quantum geometry
    Bojowald, M
    Swiderski, R
    CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (21) : 4881 - 4900
  • [3] LADDER OPERATORS FOR SOME SPHERICALLY SYMMETRIC POTENTIALS IN QUANTUM-MECHANICS
    NEWMARCH, JD
    GOLDING, RM
    AMERICAN JOURNAL OF PHYSICS, 1978, 46 (06) : 658 - 660
  • [4] SPHERICALLY SYMMETRIC EXCITON STATES IN OPENED SPHERICAL QUANTUM DOT
    Tkach, Mykola
    Seti, Julia
    Voitsekhivska, Oxana
    Dovganiuk, Mykola
    ROMANIAN JOURNAL OF PHYSICS, 2009, 54 (1-2): : 47 - 56
  • [5] Spherically symmetric quantum horizons
    Bojowald, M
    Swiderski, R
    PHYSICAL REVIEW D, 2005, 71 (08): : 1 - 5
  • [6] Mixed-mode patterns of bifurcations from spherically symmetric basic states
    Busse, F. H.
    Riahi, N.
    NONLINEARITY, 1988, 1 (02) : 379 - 388
  • [7] Spherically symmetric canonical quantum gravity
    Brahma, Suddhasattwa
    PHYSICAL REVIEW D, 2015, 91 (12)
  • [8] Spherically symmetric states of Hookium in a cavity
    Pupyshev, Vladimir I.
    Montgomery, H. E.
    PHYSICA SCRIPTA, 2015, 90 (08)
  • [9] EXISTENCE AND COMPLETENESS OF WAVE OPERATORS FOR SPHERICALLY SYMMETRIC POTENTIALS
    PEARSON, DB
    WHOULD, DH
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1973, A 14 (04): : 765 - 780
  • [10] Eigenvalue accumulation for Dirac operators with spherically symmetric potential
    Schmid, H
    Tretter, C
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (36): : 8657 - 8674