Autocorrelation Based Weighing Strategy for Short-Term Load Forecasting with the Self-Organizing Map

被引:6
|
作者
Yadav, Vineet [1 ]
Srinivasan, Dipti [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore, Singapore
基金
新加坡国家研究基金会;
关键词
self-organizing map( SOM); time series prediction; load forecasting; local models; autocorrelation; TIME-SERIES; IDENTIFICATION; NETWORK; MODEL;
D O I
10.1109/ICCAE.2010.5451972
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce a load forecasting method for short-term load forecasting which is based on a two-stage hybrid network with weighted self-organizing maps (SOM) and autoregressive (AR) model. In the first stage, a weighted SOM network is applied to split the past dynamics into several clusters in an unsupervised manner. Then in the second stage, a local linear AR model is associated with each cluster to fit its training data in a supervised way. Though this method can be used for forecasting any time series, it is best suited for processes which are non-linear and non-stationary and show cluster effects, such as the electricity load time series. Data of the electricity demand from Britain and Wales is used to verify the effectiveness of the learning and prediction of the proposed method.
引用
收藏
页码:186 / 192
页数:7
相关论文
共 50 条
  • [41] Short-term load forecasting based on CEEMDAN and Transformer
    Ran, Peng
    Dong, Kun
    Liu, Xu
    Wang, Jing
    ELECTRIC POWER SYSTEMS RESEARCH, 2023, 214
  • [42] Short-term load forecasting based on SV model
    Chen, Hao
    Wang, Yurong
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2010, 30 (11): : 86 - 89
  • [43] Nonparametric regression based short-term load forecasting
    Charytoniuk, W
    Chen, MS
    Van Olinda, P
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1998, 13 (03) : 725 - 730
  • [44] EMD-Based Short-term load forecasting
    Guo Shu-Qin
    Ruan Lin
    Dong Hai-Hong
    Li Zhen-Guo
    Liu Fei-Hui
    Cao Rui
    2014 INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL THEORY AND APPLICATION, 2014, : 141 - 145
  • [45] Secondary Forecasting Based on Deviation Analysis for Short-Term Load Forecasting
    Wang, Yang
    Xia, Qing
    Kang, Chongqing
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2011, 26 (02) : 500 - 507
  • [46] A Strategy for Short-Term Load Forecasting by Support Vector Regression Machines
    Ceperic, Ervin
    Ceperic, Vladimir
    Baric, Adrijan
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (04) : 4356 - 4364
  • [47] A Methodology for Short-Term Load Forecasting
    Jiménez J.
    Donado K.
    Quintero C.G.
    Quintero, C.G. (christianq@uninorte.edu.co), 2017, IEEE Computer Society (15): : 400 - 407
  • [48] A Methodology for Short-Term Load Forecasting
    Jimenez, J.
    Donado, K.
    Quintero, C. G.
    IEEE LATIN AMERICA TRANSACTIONS, 2017, 15 (03) : 400 - 407
  • [49] Study of TSP based on self-organizing map
    宋锦娟
    白艳萍
    胡红萍
    JournalofMeasurementScienceandInstrumentation, 2013, 4 (04) : 353 - 360
  • [50] Self-organizing map based on block learning
    Ohtsuka, A
    Kamiura, N
    Isokawa, T
    Matsui, N
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2005, E88A (11) : 3151 - 3160