Saliency-based localising active contour for automatic natural object segmentation

被引:4
|
作者
Gao, Shangbing [1 ,2 ]
Yang, Jian [1 ]
Yan, Yunyang [2 ]
Bo, Zhou Jing [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Technol, Nanjing 210094, Jiangsu, Peoples R China
[2] Huaiyin Inst Technol, Fac Comp Engn, Huaian 223003, Peoples R China
关键词
image segmentation; solid modelling; saliency-based localising active contour; automatic natural object segmentation; saliency-seeded active contour; saliency regions; maximum saliency density method; salient object pixels; cluttered background; convex hull; localising region-based active contours; LRAC;
D O I
10.1049/iet-ipr.2013.0070
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, a novel method named saliency-seeded active contour is presented for automatic natural object extraction. Since approximately the location of the desired object can easily be obtained by saliency regions or pixels in the map, we propose the maximum saliency density method to detect salient object pixels in spite of the cluttered background at first. Then, the salient object pixels are employed as the seeds of convex hull to generate the initial contour for our automatic object segmentation system. It is most important that the method proposed by the authors does not require considerable user interaction in contrast with localising region-based active contours (LRACs), that is, the segmentation task is fulfiled in a fully automatic manner. Extensive experiments results on a large variety of natural images confirm that the framework can reliably and automatically extract the object from the complex background.
引用
收藏
页码:787 / 794
页数:8
相关论文
共 50 条
  • [31] Automatic salient object segmentation using saliency map and color segmentation
    Sung-ho Han
    Gye-dong Jung
    Sangh-yuk Lee
    Yeong-pyo Hong
    Sang-hun Lee
    [J]. Journal of Central South University, 2013, 20 : 2407 - 2413
  • [32] Automatic salient object segmentation using saliency map and color segmentation
    HAN Sung-ho
    JUNG Gye-dong
    LEE Sangh-yuk
    HONG Yeong-pyo
    LEE Sang-hun
    [J]. Journal of Central South University, 2013, 20 (09) : 2407 - 2413
  • [33] Automatic salient object segmentation using saliency map and color segmentation
    Han, Sung-ho
    Jung, Gye-dong
    Lee, Sangh-yuk
    Hong, Yeong-pyo
    Lee, Sang-hun
    [J]. JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2013, 20 (09) : 2407 - 2413
  • [34] Saliency-based segmentation of dermoscopic images using colour information
    Ramella, Giuliana
    [J]. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2022, 10 (02): : 172 - 186
  • [35] An automatic active contour method for sea cucumber segmentation in natural underwater environments
    Qiao, Xi
    Bao, Jianhua
    Zeng, Lihua
    Zou, Jian
    Li, Daoliang
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2017, 135 : 134 - 142
  • [36] Saliency-based color image segmentation in foreign fiber detection
    Yang, Wenzhu
    Li, Daoliang
    Wang, Sile
    Lu, Sukui
    Yang, Jingwei
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2013, 58 (3-4) : 846 - 852
  • [37] Multimodal Saliency-based Attention for Object-based Scene Analysis
    Schauerte, Boris
    Kuehn, Benjamin
    Kroschel, Kristian
    Stiefelhagen, Rainer
    [J]. 2011 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2011, : 1173 - 1179
  • [38] Saliency-Driven Active Contour Model for Image Segmentation
    Iqbal, Ehtesham
    Niaz, Asim
    Memon, Asif Aziz
    Asim, Usman
    Choi, Kwang Nam
    [J]. IEEE ACCESS, 2020, 8 : 208978 - 208991
  • [39] Fully Automatic Saliency-based Subjects Extraction in Digital Images
    Greco, Luca
    La Cascia, Marco
    Lo Cascio, Francesco
    [J]. PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND MULTIMEDIA APPLICATIONS (SIGMAP 2013), 2013, : 129 - 136
  • [40] COLOUR SALIENCY-BASED PARAMETER OPTIMISATION FOR ADAPTIVE COLOUR SEGMENTATION
    Ilea, Dana E.
    Whelan, Paul F.
    [J]. 2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 973 - 976