Ocean resurge-induced impact melt dynamics on the peak-ring of the Chicxulub impact structure, Mexico

被引:12
|
作者
Schulte, Felix M. [1 ]
Wittmann, Axel [2 ]
Jung, Stefan [3 ]
Morgan, Joanna V. [4 ]
Gulick, Sean P. S. [5 ,6 ,7 ]
Kring, David A. [8 ]
Grieve, Richard A. F. [9 ,10 ]
Osinski, Gordon R. [9 ,10 ]
Riller, Ulrich [1 ]
机构
[1] Univ Hamburg, Inst Geol, Bundesstr 55, D-20146 Hamburg, Germany
[2] Arizona State Univ, Eyring Mat Ctr, Tempe, AZ 85287 USA
[3] Univ Hamburg, Mineral Petrog Inst, Grindelallee 48, D-20146 Hamburg, Germany
[4] Imperial Coll London, Dept Earth Sci & Engn, London SW7 2AZ, England
[5] Univ Texas Austin, Inst Geophys, Austin, TX 78758 USA
[6] Univ Texas Austin, Dept Geol Sci, Austin, TX 78758 USA
[7] Univ Texas Austin, Ctr Planetary Syst Habitabil, Austin, TX 78712 USA
[8] Lunar & Planetary Inst, Houston, TX 77058 USA
[9] Univ Western Ontario, Dept Earth Sci, London, ON N6A 5B7, Canada
[10] Univ Western Ontario, Inst Earth & Space Explorat, London, ON N6A 5B7, Canada
基金
美国国家科学基金会;
关键词
Impact cratering; Impact melt rock; Peak ring; Ocean resurge; Chicxulub; SUDBURY IGNEOUS COMPLEX; ONAPING FORMATION; CRATER STRUCTURE; RIES CRATER; ROCKS; PETROLOGY; SUEVITE; EVOLUTION; YUCATAN; CLASSIFICATION;
D O I
10.1007/s00531-021-02008-w
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Core from Hole M0077 from IODP/ICDP Expedition 364 provides unprecedented evidence for the physical processes in effect during the interaction of impact melt with rock-debris-laden seawater, following a large meteorite impact into waters of the Yucatan shelf. Evidence for this interaction is based on petrographic, microstructural and chemical examination of the 46.37-m-thick impact melt rock sequence, which overlies shocked granitoid target rock of the peak ring of the Chicxulub impact structure. The melt rock sequence consists of two visually distinct phases, one is black and the other is green in colour. The black phase is aphanitic and trachyandesitic in composition and similar to melt rock from other sites within the impact structure. The green phase consists chiefly of clay minerals and sparitic calcite, which likely formed from a solidified water-rock debris mixture under hydrothermal conditions. We suggest that the layering and internal structure of the melt rock sequence resulted from a single process, i.e., violent contact of initially superheated silicate impact melt with the ocean resurge-induced water-rock mixture overriding the impact melt. Differences in density, temperature, viscosity, and velocity of this mixture and impact melt triggered Kelvin-Helmholtz and Rayleigh-Taylor instabilities at their phase boundary. As a consequence, shearing at the boundary perturbed and, thus, mingled both immiscible phases, and was accompanied by phreatomagmatic processes. These processes led to the brecciation at the top of the impact melt rock sequence. Quenching of this breccia by the seawater prevented reworking of the solidified breccia layers upon subsequent deposition of suevite. Solid-state deformation, notably in the uppermost brecciated impact melt rock layers, attests to long-term gravitational settling of the peak ring.
引用
收藏
页码:2619 / 2636
页数:18
相关论文
共 50 条
  • [21] The Apollo peak-ring impact basin: Insights into the structure and evolution of the South Pole-Aitken basin
    Potter, Ross W. K.
    Head, James W.
    Guo, Dijun
    Liu, Jianzhong
    Xiao, Long
    ICARUS, 2018, 306 : 139 - 149
  • [22] Impact-Induced Porosity and Microfracturing at the Chicxulub Impact Structure
    Rae, Auriol S. P.
    Collins, Gareth S.
    Morgan, Joanna, V
    Salge, Tobias
    Christeson, Gail L.
    Leung, Jody
    Lofi, Johanna
    Gulick, Sean P. S.
    Poelchau, Michael
    Rillee, Ulrich
    Gebhardt, Catalina
    Grieve, Richard A. F.
    Osinski, Gordon R.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2019, 124 (07) : 1960 - 1978
  • [23] Peak-ring structure and kinematics from a multi-disciplinary study of the Schrödinger impact basin
    David A. Kring
    Georgiana Y. Kramer
    Gareth S. Collins
    Ross W. K. Potter
    Mitali Chandnani
    Nature Communications, 7
  • [24] The origin of carbonates in impact melt-bearing breccias from Site M0077 at the Chicxulub impact structure, Mexico
    Garroni, Nicolas D. D.
    Osinski, Gordon R. R.
    METEORITICS & PLANETARY SCIENCE, 2023, 58 (06) : 834 - 854
  • [25] PETROLOGY OF IMPACT-MELT ROCKS AT THE CHICXULUB MULTIRING BASIN, YUCATAN, MEXICO
    SCHURAYTZ, BC
    SHARPTON, VL
    MARIN, LE
    GEOLOGY, 1994, 22 (10) : 868 - 872
  • [26] Mapping the Chicxulub Impact Stratigraphy and Peak Ring Using Drilling and Seismic Data
    Christeson, G. L.
    Morgan, J., V
    Gulick, S. P. S.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2021, 126 (08)
  • [27] PETROLOGY AND RADIOISOTOPIC AGES OF ALLANITE IN THE PEAK RING OF THE CHICXULUB IMPACT CRATER.
    Wittmann, A.
    van Soest, M.
    Hodges, K. V.
    Darling, J. R.
    Morgan, J. V.
    Gulick, S. P. S.
    Stockli, D.
    Rasmussen, C.
    Kring, D. A.
    Schmieder, M.
    METEORITICS & PLANETARY SCIENCE, 2018, 53 : 6286 - 6286
  • [28] Author Correction: Rock fluidization during peak-ring formation of large impact structures
    Ulrich Riller
    Michael H. Poelchau
    Auriol S. P. Rae
    Felix M. Schulte
    Gareth S. Collins
    H. Jay Melosh
    Richard A. F. Grieve
    Joanna V. Morgan
    Sean P. S. Gulick
    Johanna Lofi
    Abdoulaye Diaw
    Naoma McCall
    David A. Kring
    Nature, 2018, 564 : E36 - E36
  • [29] THE WOODBURY STRUCTURE: REMAINS OF A LATE PROTEROZOIC (?) PEAK-RING IMPACT CRATER IN WEST-CENTRAL GEORGIA, USA
    Harris, R. S.
    Albin, E. F.
    Jaret, S. J.
    Jarrett, R. E.
    Jirak, G.
    King, D. T., Jr.
    Mauldin-Kinney, G.
    METEORITICS & PLANETARY SCIENCE, 2010, 45 : A76 - A76
  • [30] Geoelectric evidence for centripetal resurge of impact melt and breccias over central uplift of Araguainha impact structure
    Tong, C. H.
    Lana, C.
    Marangoni, Y. R.
    Elis, V. R.
    GEOLOGY, 2010, 38 (01) : 91 - 94