Prolongation structure of the Krichever-Novikov equation

被引:11
|
作者
Igonin, S [1 ]
Martini, R
机构
[1] Independant Univ Moscow, Moscow, Russia
[2] Univ Twente, Fac Math Sci, NL-7500 AE Enschede, Netherlands
来源
关键词
D O I
10.1088/0305-4470/35/46/306
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We completely describe Wahlquist-Estabrook prolongation structures (coverings) dependent on u, u(x), u(xx), u(xxx) for the Krichever-Novikov equation 2 u(t) = u(xxx) - 3u(xx)(2)/(2u(x)) + p(u)/u(x) + au(x) in the case when the polynomial p(u) = 4u(3) - g(2)u - g(3) has distinct roots. We prove that there is a universal prolongation algebra isomorphic to the direct sum of a commutative two-dimensional algebra and a certain subalgebra of the tensor product of sl(2) (C) with the algebra of regular functions on an affine elliptic curve. This is achieved by identifying this prolongation algebra with the one for the anisotropic Landau-Lifshitz equation. Using these results, we find for the Krichever-Novikov equation a new zero-curvature representation, which is polynomial in the spectral parameter in contrast to the known elliptic ones.
引用
收藏
页码:9801 / 9810
页数:10
相关论文
共 50 条
  • [21] KRICHEVER-NOVIKOV BASES FOR THE BOSONIC STRING
    LEE, TJ
    VISWANATHAN, KS
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1989, 4 (17): : 4469 - 4474
  • [22] EIGENVALUE EQUATIONS FOR KRICHEVER-NOVIKOV ALGEBRAS
    FAIRLIE, DB
    FLETCHER, P
    NUYTS, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (05) : 957 - 964
  • [23] Extensions of Superalgebras of Krichever-Novikov Type
    Kreusch, Marie
    LETTERS IN MATHEMATICAL PHYSICS, 2013, 103 (11) : 1171 - 1189
  • [24] SCHWARZIAN CONNECTIONS IN THE KRICHEVER-NOVIKOV ALGEBRA
    SAITO, T
    PROGRESS OF THEORETICAL PHYSICS, 1991, 85 (04): : 743 - 750
  • [25] On the module structure of the center of hyperelliptic Krichever-Novikov algebras II
    Cox, Ben
    Guo, Xiangqian
    Im, Mee Seong
    Zhao, Kaiming
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (12) : 5142 - 5163
  • [26] Difference Krichever-Novikov Operators of Rank 2
    Mauleshova, G. S.
    Mironov, A. E.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2019, 305 (01) : 195 - 208
  • [27] HAMILTONIAN-FORMALISM FOR KRICHEVER-NOVIKOV EQUATIONS
    SOKOLOV, VV
    DOKLADY AKADEMII NAUK SSSR, 1984, 277 (01): : 48 - 50
  • [28] Some remarks on the cohomology of Krichever-Novikov algebras
    Wagemann, F
    LETTERS IN MATHEMATICAL PHYSICS, 1999, 47 (02) : 173 - 177
  • [29] SUPER SCHWARZIAN CONNECTIONS IN KRICHEVER-NOVIKOV SUPERALGEBRAS
    KONISI, G
    SAITO, T
    TAKAHASHI, W
    PROGRESS OF THEORETICAL PHYSICS, 1991, 86 (01): : 229 - 242
  • [30] DEGENERATIONS OF GENERALIZED KRICHEVER-NOVIKOV ALGEBRAS ON TORI
    SCHLICHENMAIER, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (08) : 3809 - 3824