Effective bounds for the number of transcendental points on subvarieties of semi-abelian varieties

被引:17
|
作者
Hrushovski, E [1 ]
Pillay, A
机构
[1] Hebrew Univ Jerusalem, Dept Math, IL-91904 Jerusalem, Israel
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
D O I
10.1353/ajm.2000.0020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a semi-abelian variety, and X a subvariety of A, both defined over a number field. Assume that X does not contain X-1 + X-2 for any positive-dimensional subvarieties X-1, X-2 of A. Let Gamma be a subgroup of A(C) of finite rational rank. We give doubly exponential bounds for the size of (X boolean AND Gamma)\X((Q) over bar). Among the ingredients is a uniform bound, doubly exponential in the data, on finite sets which are quantifier-free definable in differentially closed fields. We also give uniform bounds on X boolean AND Gamma in the case where X contains no translate of any semi-abelian subvariety of A and Gamma is a subgroup of A(C) of finite rational rank which has trivial intersection with A((Q) over bar). (Here A is assumed to be defined over a number field, but X need not be).
引用
收藏
页码:439 / 450
页数:12
相关论文
共 50 条
  • [31] Generic vanishing for semi-abelian varieties and integral Alexander modules
    Yongqiang Liu
    Laurentiu Maxim
    Botong Wang
    Mathematische Zeitschrift, 2019, 293 : 629 - 645
  • [32] Some results about zero-cycles on abelian and semi-abelian varieties
    Gazaki, Evangelia
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (08) : 1716 - 1726
  • [33] The second main theorem for holomorphic curves into semi-Abelian varieties
    Noguchi, J
    Winkelmann, J
    Yamanoi, K
    ACTA MATHEMATICA, 2002, 188 (01) : 129 - 161
  • [34] Generic vanishing for semi-abelian varieties and integral Alexander modules
    Liu, Yongqiang
    Maxim, Laurentiu
    Wang, Botong
    MATHEMATISCHE ZEITSCHRIFT, 2019, 293 (1-2) : 629 - 645
  • [35] Perverse sheaves on semi-abelian varieties—a survey of properties and applications
    Yongqiang Liu
    Laurentiu Maxim
    Botong Wang
    European Journal of Mathematics, 2020, 6 : 977 - 997
  • [36] Local bounds for torsion points on abelian varieties
    Clark, Pete L.
    Xarles, Xavier
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (03): : 532 - 555
  • [37] Arithmetic and dynamical degrees of self-morphisms of semi-abelian varieties
    Matsuzawa, Yohsuke
    Sano, Kaoru
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (06) : 1655 - 1672
  • [38] A new unicity theorem and Erdos' problem for polarized semi-abelian varieties
    Corvaja, Pietro
    Noguchi, Junjiro
    MATHEMATISCHE ANNALEN, 2012, 353 (02) : 439 - 464
  • [39] The second main theorem for holomorphic curves into semi-abelian varieties II
    Noguchi, Junjiro
    Winkelmann, Joerg
    Yamanoi, Katsutoshi
    FORUM MATHEMATICUM, 2008, 20 (03) : 469 - 503
  • [40] NEVANLINNA THEORY FOR HOLOMOPHIC CURVES FROM ANNULI INTO SEMI-ABELIAN VARIETIES
    Si Duc Quang
    MATHEMATICA SLOVACA, 2022, 72 (02) : 367 - 378