Effective bounds for the number of transcendental points on subvarieties of semi-abelian varieties

被引:17
|
作者
Hrushovski, E [1 ]
Pillay, A
机构
[1] Hebrew Univ Jerusalem, Dept Math, IL-91904 Jerusalem, Israel
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
D O I
10.1353/ajm.2000.0020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a semi-abelian variety, and X a subvariety of A, both defined over a number field. Assume that X does not contain X-1 + X-2 for any positive-dimensional subvarieties X-1, X-2 of A. Let Gamma be a subgroup of A(C) of finite rational rank. We give doubly exponential bounds for the size of (X boolean AND Gamma)\X((Q) over bar). Among the ingredients is a uniform bound, doubly exponential in the data, on finite sets which are quantifier-free definable in differentially closed fields. We also give uniform bounds on X boolean AND Gamma in the case where X contains no translate of any semi-abelian subvariety of A and Gamma is a subgroup of A(C) of finite rational rank which has trivial intersection with A((Q) over bar). (Here A is assumed to be defined over a number field, but X need not be).
引用
收藏
页码:439 / 450
页数:12
相关论文
共 50 条
  • [1] Division points on subvarieties of isotrivial semi-Abelian varieties
    Ghioca, Dragos
    Moosa, Rahim
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2006, 2006
  • [2] Torsion subvarieties of semi-abelian varieties
    David, S
    Philippon, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (08): : 587 - 592
  • [3] Topology of Subvarieties of Complex Semi-abelian Varieties
    Liu, Yongqiang
    Maxim, Laurentiu
    Wang, Botong
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (14) : 11169 - 11208
  • [4] Small points on semi-abelian varieties
    Chambert-Loir, A
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2000, 33 (06): : 789 - 821
  • [5] DIVISION POINTS ON SEMI-ABELIAN VARIETIES
    MCQUILLAN, M
    INVENTIONES MATHEMATICAE, 1995, 120 (01) : 143 - 159
  • [6] Product of Local Points of Subvarieties of Almost Isotrivial Semi-Abelian Varieties Over a Global Function Field
    Sun, Chia-Liang
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (19) : 4477 - 4498
  • [7] Non-archimedean entire curves in closed subvarieties of semi-abelian varieties
    Morrow, Jackson S.
    MATHEMATISCHE ANNALEN, 2021, 379 (3-4) : 1003 - 1010
  • [8] Non-archimedean entire curves in closed subvarieties of semi-abelian varieties
    Jackson S. Morrow
    Mathematische Annalen, 2021, 379 : 1003 - 1010
  • [9] Perverse sheaves on semi-abelian varieties
    Liu, Yongqiang
    Maxim, Laurentiu
    Wang, Botong
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (02):
  • [10] Diophantine approximation on semi-abelian varieties
    Rémond, G
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2003, 36 (02): : 191 - 212