NiCo2S4 Bi-metal Sulfide Coating on LiNi0.6Co0.2Mn0.2O2 Cathode for High-Performance All-Solid-State Lithium Batteries

被引:7
|
作者
Kim, Young-Jin [1 ]
Rajagopal, Rajesh [1 ]
Kang, Sung [2 ]
Ryu, Kwang-Sun [1 ]
机构
[1] Univ Ulsan, Dept Chem, Ulsan 44776, South Korea
[2] Res Inst Ind Sci & Technol, Pohang 790330, South Korea
来源
ACS OMEGA | 2021年 / 6卷 / 10期
基金
新加坡国家研究基金会;
关键词
D O I
10.1021/acsomega.0c05942
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
NiCo2S4 nanoparticles (NPs) were dry coated on LiNi0.6Co0.2Mn0.2O2 (NCM622) cathode using a resonant acoustic coating technique to produce all-solid-state lithium batteries. The NiCo2S4 coating improved the electrochemical properties of the NCM622 cathode. In addition, NiCo2S4 eliminated the space-charge layer and the cathode showed an excellent affinity with the interface with a sulfide-based solid electrolyte as an inert material. X-ray diffraction patterns of NCM622 coated with NiCo2S4 showed the same peak separations and lattice parameters as those of bare NCM622. Field-emission scanning electron microscopy and electron dispersive spectroscopy mapping analyses showed that 0.3 wt% NiCo2S4-coated NCM622 had an evenly modified surface with NiCo2S4 NPs. X-ray photoelectron spectroscopy (XPS) revealed that the surface of 0.3 wt% NiCo2S4-coated NCM622 had two different S 2p peaks, a Co-S peak, and Ni and Co peaks, compared to those of bare NCM622. Electrochemical studies with electrochemical impedance spectroscopy and galvanostatic charge-discharge cycle performances showed that NiCo2S4-coated NCM622 retained a higher specific capacity over multiple cycles than bare NCM622. Especially, 0.3 wt% NiCo2S4-coated NCM622 exhibited a capacity retention of 60.6% at a current density of 15 mA/g for 20 cycles, compared to only 37.3% for bare NCM622. Finally, interfacial XPS and transmission electron microscopy-electron energy loss spectroscopy analyses confirmed the stable state of 0.3 wt% NiCo2S4-coated NCM622 with minimal side reactions.
引用
收藏
页码:6824 / 6835
页数:12
相关论文
共 50 条
  • [31] The electrochemical performance of LiNi0.6Co0.2Mn0.2O2 material doped by Ti as cathode for lithium ion battery
    Zhang J.
    Guo X.-D.
    Wu Z.-G.
    Xiang W.
    Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities, 2020, 34 (04): : 1053 - 1059
  • [32] Preparation and electrochemical investigation of single-crystal LiNi0.6Co0.2Mn0.2O2 for high-performance lithium-ion batteries
    Tian, Rong-Zheng
    Wang, Ze-Xin
    Wang, Xiao-Qing
    Zhang, Hong-Zhou
    Ma, Yue
    Song, Da-Wei
    Shi, Xi-Xi
    Zhang, Lian-Qi
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (10) : 4877 - 4883
  • [33] Synthesis and electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode materials
    钟胜奎
    李伟
    李艳红
    邹正光
    唐鑫
    Transactions of Nonferrous Metals Society of China, 2009, 19 (06) : 1499 - 1503
  • [34] Single-crystal LiNi0.6Co0.2Mn0.2O2 as high performance cathode materials for Li-ion batteries
    Wu, Borong (wubr@bit.edu.cn), 1600, Elsevier Ltd (674):
  • [35] Synthesis of LiNi0.6Co0.2Mn0.2O2 from mixed cathode materials of spent lithium-ion batteries
    Chu, Wei
    Zhang, YaLi
    Chen, Xia
    Huang, YaoGuo
    Cui, HongYou
    Wang, Ming
    Wang, Jing
    JOURNAL OF POWER SOURCES, 2020, 449
  • [36] Synthesis and characterization of concentration-gradient LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries
    Liang, Longwei
    Du, Ke
    Lu, Wei
    Peng, Zhongdong
    Cao, Yanbing
    Hu, Guorong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 613 : 296 - 305
  • [37] Rheological phase method synthesis of carbon-coated LiNi0.6Co0.2Mn0.2O2 as the cathode material of high-performance lithium-ion batteries
    Tian Xie
    Fugen Sun
    Xiaoqing Zhou
    Li Liu
    Zhenyuan Liu
    Liekai Liu
    Zilong Wu
    Zhihao Yue
    Lang Zhou
    Hao Tang
    Applied Physics A, 2018, 124
  • [38] Synthesis and electrochemical performance of LiNi0.6Co0.2Mn0.2O2/reduced graphene oxide cathode materials for lithium-ion batteries
    Peng Yue
    Zhixing Wang
    Qian Zhang
    Guochun Yan
    Huajun Guo
    Xinhai Li
    Ionics, 2013, 19 : 1329 - 1334
  • [39] Rheological phase method synthesis of carbon-coated LiNi0.6Co0.2Mn0.2O2 as the cathode material of high-performance lithium-ion batteries
    Xie, Tian
    Sun, Fugen
    Zhou, Xiaoqing
    Liu, Li
    Liu, Zhenyuan
    Liu, Liekai
    Wu, Zilong
    Yue, Zhihao
    Zhou, Lang
    Tang, Hao
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2018, 124 (10):
  • [40] Single-crystal LiNi0.6Co0.2Mn0.2O2 as high performance cathode materials for Li-ion batteries
    Wang, Lei
    Wu, Borong
    Mu, Daobin
    Liu, Xiaojiang
    Peng, Yiyuan
    Xu, Hongliang
    Liu, Qi
    Gai, Liang
    Wu, Feng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 674 : 360 - 367