ON THE DIAMOND-ALPHA RIEMANN INTEGRAL AND MEAN VALUE THEOREMS ON TIME SCALES

被引:0
|
作者
Malinowska, Agnieszka B. [1 ]
Torres, Delfim F. M.
机构
[1] Bialystok Tech Univ, Fac Comp Sci, PL-15351 Bialystok, Poland
来源
DYNAMIC SYSTEMS AND APPLICATIONS | 2009年 / 18卷 / 3-4期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study diamond-alpha integrals on time scales. A diamond-alpha version of Fermat's theorem for stationary points is also proved, as well as Rolle's, Lagrange's, and Cauchy's mean value theorems on time scales.
引用
收藏
页码:469 / 481
页数:13
相关论文
共 50 条
  • [21] On Cauchy-Schwarz inequality for N-tuple diamond-alpha integral
    Hu, Xi-Mei
    Tian, Jing-Feng
    Chu, Yu-Ming
    Lu, Yan-Xia
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [22] MEAN-VALUE THEOREMS FOR GENERALIZED RIEMANN DERIVATIVES
    ASH, JM
    JONES, RL
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 101 (02) : 263 - 271
  • [23] More on Holder's Inequality and It's Reverse via the Diamond-Alpha Integral
    Zakarya, M.
    Abd El-Hamid, H. A.
    AlNemer, Ghada
    Rezk, H. M.
    SYMMETRY-BASEL, 2020, 12 (10): : 1 - 19
  • [24] Mean value theorems for the noncausal stochastic integral
    Ogawa, Shigeyoshi
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2022, 39 (02) : 801 - 814
  • [25] Mean value theorems for the noncausal stochastic integral
    Shigeyoshi Ogawa
    Japan Journal of Industrial and Applied Mathematics, 2022, 39 : 801 - 814
  • [26] On Hardy and Hermite-Hadamard inequalities for N-tuple diamond-alpha integral
    Mao, Zhong-Xuan
    Zhang, Wen -Bin
    Tian, Jing-Feng
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 53 (03): : 667 - 689
  • [27] Applications of mean value theorems to the theory of the Riemann zeta function
    Gonek, S. M.
    Recent Perspectives in Random Matrix Theory and Number Theory, 2005, 322 : 201 - 223
  • [28] MEAN VALUE THEOREMS FOR SOME LINEAR INTEGRAL OPERATORS
    Lupu, Cezar
    Lupu, Tudorel
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2009,
  • [30] Correction to: Mean value theorems for the noncausal stochastic integral
    Shigeyoshi Ogawa
    Japan Journal of Industrial and Applied Mathematics, 2023, 40 : 755 - 756