Novel Fractional-Order Difference Schemes Reducible to Standard Integer-Order Formulas

被引:4
|
作者
Paskas, Milorad P. [1 ]
Reljin, Irini S. [2 ]
Reljin, Branimir D. [2 ]
机构
[1] Univ Belgrade, Sch Elect Engn, Innovat Ctr, Belgrade 11000, Serbia
[2] Univ Belgrade, Sch Elect Engn, Belgrade 11000, Serbia
关键词
Backward fractional differences; central fractional differences; fractional calculus; Grunwald-Letnikov derivatives; texture enhancement; DIFFUSION;
D O I
10.1109/LSP.2017.2699285
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we advise numerical schemes for calculation of fractional derivatives of Grunwald-Letnikov type that reduce to standard integer-order derivative schemes. Since, in the literature, only forward differences have such a property, here, novel forms of backward differences and central differences based both on integer and half-integer mesh points are proposed. It enables the use of the proposed fractional differences interchangeably with standard difference formulas. The proposed schemes are qualitatively and quantitatively tested on 2-D signals for texture enhancement. The obtained results show that the proposed fractional differences provide better performances in comparison to traditional schemes.
引用
收藏
页码:912 / 916
页数:5
相关论文
共 50 条
  • [1] A method for the integer-order approximation of fractional-order systems
    Krajewski, W.
    Viaro, U.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (01): : 555 - 564
  • [2] Fractional-Order Observer for Integer-Order LTI Systems
    Weise, Christoph
    Wulff, Kai
    Reger, Johann
    2017 11TH ASIAN CONTROL CONFERENCE (ASCC), 2017, : 2101 - 2106
  • [3] AN INTERPOLATION APPROACH TO THE INTEGER-ORDER APPROXIMATION OF FRACTIONAL-ORDER SYSTEMS
    Casagrande, Daniele
    Krajewski, Wieslaw
    Viaro, Umberto
    2019 24TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2019, : 237 - 242
  • [4] Mutual transformations of fractional-order and integer-order optical vortices
    Alexeyev, C. N.
    Egorov, Yu. A.
    Volyar, A. V.
    PHYSICAL REVIEW A, 2017, 96 (06)
  • [5] Loewner integer-order approximation of MIMO fractional-order systems
    Abdalla, Hassan Mohamed Abdelalim
    Casagrande, Daniele
    Krajewski, Wieslaw
    Viaro, Umberto
    APPLIED NUMERICAL MATHEMATICS, 2024, 198 : 112 - 121
  • [6] Loewner integer-order approximation of MIMO fractional-order systems
    Abdalla, Hassan Mohamed Abdelalim
    Casagrande, Daniele
    Krajewski, Wieslaw
    Viaro, Umberto
    Applied Numerical Mathematics, 2024, 198 : 112 - 121
  • [7] Fractional-Order Partial Cancellation of Integer-Order Poles and Zeros
    Voss, Benjamin
    Weise, Christoph
    Ruderman, Michael
    Reger, Johann
    IFAC PAPERSONLINE, 2022, 55 (25): : 259 - 264
  • [8] THE INTEGER-ORDER APPROXIMATION OF FRACTIONAL-ORDER SYSTEMS IN THE LOEWNER FRAMEWORK
    Casagrande, D.
    Krajewski, W.
    Viaro, U.
    IFAC PAPERSONLINE, 2019, 52 (03): : 43 - 48
  • [9] Fractional-Order Memory Reset Control for Integer-Order LTI Systems
    Weise, Christoph
    Wulff, Kai
    Reger, Johann
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 5710 - 5715
  • [10] Different Generalized Synchronization Schemes Between Integer-Order and Fractional-Order Chaotic Systems with Different Dimensions
    Ouannas A.
    Karouma A.
    Differential Equations and Dynamical Systems, 2018, 26 (1-3) : 125 - 137