Ideal semigroups of noetherian domains and Ponizovski decompositions

被引:3
|
作者
Halter-Koch, Franz [1 ]
机构
[1] Karl Franzens Univ Graz, Inst Math, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1016/j.jpaa.2006.07.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be an integral domain with quotient field K and L superset of K a finite extension field. By an R-lattice in L we mean a finitely generated R-module containing a basis of L over K. The set of all R-lattices is a commutative multiplicative semigroup. If R is one-dimensional and noetherian, we determine the structure of this semigroup and of the corresponding class semigroup by means of its partial Ponizovski factors. If moreover R is a Dedekind domain and L superset of K is separable, we give criteria for the partial Ponizovski factors to be groups in terms of the different and the conductor of their endomorphism rings. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:763 / 770
页数:8
相关论文
共 50 条