Cortical feature maps via geometric models

被引:0
|
作者
Pauls, Scott D. [1 ]
机构
[1] Dartmouth Coll, Dept Math, Hanover, NH 03755 USA
关键词
Visual cortex; Sub-Riemannian geometry; Cortical maps; PRIMARY VISUAL-CORTEX; FUNCTIONAL ARCHITECTURE; STRIATE CORTEX; INTRINSIC CONNECTIONS; ORIENTATION; CAT; PATTERNS; MONKEY; SPACE;
D O I
10.1016/j.jphysparis.2009.05.003
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We present a new model for feature map formation in the primary visual cortex, building on dimension reduction/wire length minimization techniques We create a model space of feature parameters, endowed with various geometries picked to reflect physical or experimental data and search for a map from the parameter space to the cortical sheet which minimizes distortions. Upon simulating these maps, we find a family of Riemannian and sub-Riemannian geometries which give rise to feature maps which reflect known experimental data concerning (1) the qualitative arrangement of orientation maps and (2) the distribution of connections. One of the main findings is that experimental data showing both elongated and non-elongated connection patterns are represented within our family of models. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:46 / 51
页数:6
相关论文
共 50 条
  • [31] Topology-Preserving and Geometric Feature-Correction Watermarking of Vector Maps
    Xi, Xu
    Zhang, Xinchang
    Sun, Ying
    Jiang, Xin
    Xin, Qinchuan
    [J]. IEEE ACCESS, 2020, 8 : 33428 - 33441
  • [32] Grinding with classification via geometric partition models
    Smirnov, Georgi V.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (30) : 8751 - 8763
  • [33] Simultaneous constraints on pre- and post-synaptic cells couple cortical feature maps in a 2D geometric model of orientation preference
    Thomas, Peter J.
    Cowan, Jack D.
    [J]. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2006, 23 (02): : 119 - 138
  • [34] On the (Limited) Difference between Feature and Geometric Semantic Similarity Models
    Ahlqvist, Ola
    [J]. GEOSPATIAL SEMANTICS, 2011, 6631 : 124 - 132
  • [35] Access Control with Encrypted Feature Maps for Object Detection Models
    Nagamori, Teru
    Ito, Hiroki
    Maungmaung, AprilPyone
    Kiya, Hitoshi
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2023, E106D (01) : 12 - 21
  • [36] Cortical Maps
    Bednar, James A.
    Wilson, Stuart P.
    [J]. NEUROSCIENTIST, 2016, 22 (06): : 604 - 617
  • [37] Efficient χ2 Kernel Linearization via Random Feature Maps
    Yuan, Xiao-Tong
    Wang, Zhenzhen
    Deng, Jiankang
    Liu, Qingshan
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (11) : 2448 - 2453
  • [38] Fast and Scalable Polynomial Kernels via Explicit Feature Maps
    Ninh Pham
    Pagh, Rasmus
    [J]. 19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), 2013, : 239 - 247
  • [39] Classification of breast masses in mammograms using geometric and topological feature maps and shape distribution
    de Brito Silva T.F.
    de Paiva A.C.
    Silva A.C.
    Braz Júnior G.
    de Almeida J.D.S.
    [J]. Research on Biomedical Engineering, 2020, 36 (03) : 225 - 235
  • [40] Grassmannian diffusion maps based surrogate modeling via geometric harmonics
    dos Santos, Ketson R. M.
    Giovanis, Dimitris G.
    Kontolati, Katiana
    Loukrezis, Dimitrios
    Shields, Michael D.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2022, 123 (15) : 3507 - 3529