Femtosecond pump-probe nondestructive examination of materials (invited)

被引:129
|
作者
Norris, PM [1 ]
Caffrey, AP
Stevens, RJ
Klopf, JM
McLeskey, JT
Smith, AN
机构
[1] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA
[2] Univ Virginia, Dept Engn Phys, Charlottesville, VA 22904 USA
[3] Virginia Commonwealth Univ, Dept Mech Engn, Richmond, VA 23284 USA
[4] USN Acad, Dept Mech Engn, Annapolis, MD 21402 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2003年 / 74卷 / 01期
关键词
D O I
10.1063/1.1517187
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Ultrashort-pulsed lasers have been demonstrated as effective tools for the nondestructive examination (NDE) of energy transport properties in thin films. After the instantaneous heating of the surface of a 100 nm metal film, it will take similar to100 ps for the influence of the substrate to affect the surface temperature profile. Therefore, direct measurement of energy transport in a thin film sample requires a technique with picosecond temporal resolution. The pump-probe experimental technique is able to monitor the change in reflectance or transmittance of the sample surface as a function of time on a subpicosecond time scale. Changes in reflectance and transmittance can then be used to determine properties of the film. In the case of metals, the change in reflectance is related to changes in temperature and strain. The transient temperature profile at the surface is then used to determine the rate of coupling between the electron and phonon systems as well as the thermal conductivity of the material. In the case of semiconductors, the change in reflectance and transmittance is related to changes in the local electronic states and temperature. Transient thermotransmission experiments have been used extensively to observe electron-hole recombination phenomena and thermalization of hot electrons. Application of the transient thermoreflectance (TTR) and transient thermotransmittance (TTT) technique to the study of picosecond phenomena in metals and semiconductors will be discussed. The pump-probe experimental setup will be described, along with the details of the experimental apparatus in use at the University of Virginia. The thermal model applicable to ultrashort-pulsed laser heating of metals will be presented along with a discussion of the limitations of this model. Details of the data acquisition and interpretation of the experimental results will be given, including a discussion of the reflectance models used to relate the measured changes in reflectance to calculated changes in temperature. Finally, experimental results will be presented that demonstrate the use of the TTR technique for measuring the electron-phonon coupling factor and the thermal conductivity of thin metallic films. The use of the TTT technique to distinguish between different levels of doping and alloying in thin film samples of hydrogenated amorphous silicon will also be discussed briefly. (C) 2003 American Institute of Physics.
引用
收藏
页码:400 / 406
页数:7
相关论文
共 50 条
  • [1] An alternative differential method of femtosecond pump-probe examination of materials
    Ivanov, R.
    Villa, Jesus
    de la Rosa, Ismael
    Marin, E.
    OPTICS EXPRESS, 2011, 19 (12): : 11290 - 11298
  • [2] Pump-probe Microscopy: Applications in Biomedicine and Materials Science (Invited)
    Wu Simin
    Zhang Bohan
    Zheng Bin
    Ji Minbiao
    ACTA PHOTONICA SINICA, 2021, 50 (08)
  • [3] Femtosecond pump-probe spectroscopy as an instrument for nanostructured materials investigation.
    Chekalin, Sergey V.
    ULTRAFAST PHENOMENA XVI, 2009, 92 : 1003 - 1005
  • [4] Invited Review Article: Pump-probe microscopy
    Fischer, Martin C.
    Wilson, Jesse W.
    Robles, Francisco E.
    Warren, Warren S.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (03):
  • [5] Femtosecond pump-probe reveals exciton formation
    Laser Focus World, 2000, 36 (07):
  • [6] FEMTOSECOND PUMP-PROBE SPECTROSCOPY OF SOLVATED DYES
    BOSMA, WB
    YAN, YJ
    MUKAMEL, S
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1990, 199 : 68 - PHYS
  • [7] Femtosecond pump-probe spectroscopy on MoSI nanowires
    Gadermaier, Christoph
    Kusar, Primoz
    Vengust, Damjan
    Mihailovic, Dragan
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2008, 245 (10): : 2098 - 2101
  • [8] Femtosecond pump-probe spectroscopy of the dendrimeric nanostar
    Tortschanoff, A
    Piryatinski, A
    Mukamel, S
    JOURNAL OF LUMINESCENCE, 2001, 94 : 569 - 573
  • [9] Femtosecond pump-probe diagnostics of preformed plasma channels
    Zgadzaj, R
    Gaul, EW
    Matlis, NH
    Shvets, G
    Debus, A
    Downer, MC
    ADVANCED ACCELERATOR CONCEPTS, 2004, 737 : 736 - +
  • [10] Femtosecond pump-probe investigation of ultrafast phenomenon of GaAs
    Yuan, Dong-Qing
    ENGINEERING SOLUTIONS FOR MANUFACTURING PROCESSES, PTS 1-3, 2013, 655-657 : 851 - 854