Visualizing genetic programming ancestries using graph databases

被引:3
|
作者
McPhee, Nicholas Freitag [1 ]
Casale, Maggie M. [2 ]
Finzel, Mitchell [1 ]
Helmuth, Thomas [3 ]
Spector, Lee [4 ]
机构
[1] Univ Minnesota, Morris, MN 56267 USA
[2] Design Ctr Inc, St Paul, MN USA
[3] Washington & Lee Univ, Lexington, VA 24450 USA
[4] Hampshire Coll, Amherst, MA 01002 USA
基金
美国国家科学基金会;
关键词
visualization; genetic programming; graph database; ancestry;
D O I
10.1145/3067695.3075617
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Previous work has demonstrated the utility of graph databases as a tool for collecting and analyzing ancestry in evolutionary computation runs. That work focused on sections of individual runs, whereas this poster illustrates the application of these ideas on the entirety of large runs (up to one million individuals) and combinations of multiple runs. Here we use these tools to generate graphs showing all the ancestors of successful individuals from a variety of stack-based genetic programming runs on software synthesis problems. These graphs highlight important moments in the evolutionary process. They also allow us to compare the dynamics when using different evolutionary tools, such as different selection mechanisms or representations, as well as comparing the dynamics for successful and unsuccessful runs.
引用
收藏
页码:245 / 246
页数:2
相关论文
共 50 条
  • [41] Acquisition of Characteristic Block Preserving Outerplanar Graph Patterns by Genetic Programming using Label Information
    Tokuhara, Fumiya
    Miyahara, Tetsuhiro
    Suzuki, Yusuke
    Uchida, Tomoyuki
    Kuboyama, Tetsuji
    PROCEEDINGS 2016 5TH IIAI INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS IIAI-AAI 2016, 2016, : 203 - 210
  • [42] Automated Design of Mechatronic Systems using Bond-Graph Modeling and Simulation and Genetic Programming
    Kayani, Saheeb Ahmed
    Malik, Muhammad Afzaal
    2007 INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY, 2007, : 104 - 110
  • [43] Representing and querying disease networks using graph databases
    Artem Lysenko
    Irina A. Roznovăţ
    Mansoor Saqi
    Alexander Mazein
    Christopher J Rawlings
    Charles Auffray
    BioData Mining, 9
  • [44] Investigate Financial Crime Patterns Using Graph Databases
    Bhardwaj, Akashdeep
    Kaushik, Keshav
    IT PROFESSIONAL, 2022, 24 (04) : 27 - 36
  • [45] Using graph databases in source code plagiarism detection
    Novak, Matija
    Levak, Iva
    CENTRAL EUROPEAN CONFERENCE ON INFORMATION AND INTELLIGENT SYSTEMS, CECIIS 2022, 2022, : 465 - 470
  • [46] Efficient search in graph databases using cross filtering
    Lee, Chun-Hee
    Chung, Chin-Wan
    INFORMATION SCIENCES, 2014, 286 : 1 - 18
  • [47] Analytical queries on semantic trajectories using graph databases
    Gomez, Leticia, I
    Kuijpers, Bart
    Vaisman, Alejandro A.
    TRANSACTIONS IN GIS, 2019, 23 (05) : 1078 - 1101
  • [48] Modeling XACML Security Policies Using Graph Databases
    Paniagua Diez, Fidel
    Vasu, Amrutha Chikkanayakanahalli
    Suarez Touceda, Diego
    Sierra Camara, Jose Maria
    IT PROFESSIONAL, 2017, 19 (06) : 52 - 57
  • [49] Using Queries as Schema-Templates for Graph Databases
    Stephan Mennicke
    Jan-Christoph Kalo
    Wolf-Tilo Balke
    Datenbank-Spektrum, 2018, 18 (2) : 89 - 98
  • [50] Representing and querying disease networks using graph databases
    Lysenko, Artem
    Roznovat, Irina A.
    Saqi, Mansoor
    Mazein, Alexander
    Rawlings, Christopher J.
    Auffray, Charles
    BIODATA MINING, 2016, 9