Measurement of the shell decompression in direct-drive inertial-confinement-fusion implosions

被引:19
|
作者
Michel, D. T. [1 ]
Hu, S. X. [1 ]
Davis, A. K. [1 ]
Glebov, V. Yu. [1 ]
Goncharov, V. N. [1 ]
Igumenshchev, I. V. [1 ]
Radha, P. B. [1 ]
Stoeckl, C. [1 ]
Froula, D. H. [1 ]
机构
[1] Univ Rochester, Lab Laser Energet, Rochester, NY 14636 USA
关键词
RAYLEIGH-TAYLOR GROWTH; PLANAR TARGETS; LASER; HYDRODYNAMICS; PERFORMANCE; DISPERSION; LIGHT;
D O I
10.1103/PhysRevE.95.051202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A series of direct-drive implosions performed on OMEGA were used to isolate the effect of an adiabat on the in-flight shell thickness. The maximum in-flight shell thickness was measured to decrease from 75 +/- 2 to 60 +/- 2 mu m when the adiabat of the shell was reduced from 6 to 4.5, but when decreasing the adiabat further (1.8), the shell thickness increased to 75 +/- 2 mu m due to the growth of the Rayleigh-Taylor instability. Hydrodynamic simulations suggest that a laser imprint is the dominant seed for these nonuniformities.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Demonstration of hot-spot fuel gain exceeding unity in direct-drive inertial confinement fusion implosions
    Williams, C. A.
    Betti, R.
    Gopalaswamy, V.
    Knauer, J. P.
    Forrest, C. J.
    Lees, A.
    Ejaz, R.
    Farmakis, P. S.
    Cao, D.
    Radha, P. B.
    Anderson, K. S.
    Regan, S. P.
    Glebov, V. Yu
    Shah, R. C.
    Stoeckl, C.
    Ivancic, S.
    Churnetski, K.
    Janezic, R. T.
    Fella, C.
    Rosenberg, M. J.
    Bonino, M. J.
    Harding, D. R.
    Shmayda, W. T.
    Carroll-Nellenback, J.
    Hu, S. X.
    Epstein, R.
    Collins, T. J. B.
    Thomas, C. A.
    Igumenshchev, I. V.
    Goncharov, V. N.
    Theobald, W.
    Woo, K. M.
    Marozas, J. A.
    Bauer, K. A.
    Sampat, S.
    Waxer, L. J.
    Turnbull, D.
    Heuer, P. V.
    Mcclow, H.
    Ceurvorst, L.
    Scullin, W.
    Edgell, D. H.
    Koch, M.
    Bredesen, D.
    Johnson, M. Gatu
    Frenje, J. A.
    Petrasso, R. D.
    Shuldberg, C.
    Farrell, M.
    Murray, J.
    NATURE PHYSICS, 2024, 20 (05) : 758 - 764
  • [22] Laser plasma interaction in direct-drive inertial confinement fusion
    Myatt, J. F.
    Shaw, J.
    Goncharov, V. N.
    Zhang, J.
    Maximov, A. V.
    Short, R. W.
    Follett, R. K.
    Seka, W.
    Edgell, D. H.
    Froula, D. H.
    9TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA 2015), 2016, 717
  • [23] One-dimensional hydrodynamic simulations of low convergence ratio direct-drive inertial confinement fusion implosions
    Paddock, R. W.
    Martin, H.
    Ruskov, R. T.
    Scott, R. H. H.
    Garbett, W.
    Haines, B. M.
    Zylstra, A. B.
    Aboushelbaya, R.
    Mayr, M. W.
    Spiers, B. T.
    Wang, R. H. W.
    Norreys, P. A.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2189):
  • [24] A knock-on deuteron imager for measurements of fuel and hotspot asymmetry in direct-drive inertial confinement fusion implosions (invited)
    Rinderknecht, H. G.
    Heuer, P. V.
    Kunimune, J.
    Adrian, P. J.
    Knauer, J. P.
    Theobald, W.
    Fairbanks, R.
    Brannon, B.
    Ceurvorst, L.
    Gopalaswamy, V.
    Williams, C. A.
    Radha, P. B.
    Regan, S. P.
    Johnson, M. Gatu
    Seguin, F. H.
    Frenje, J. A.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (09):
  • [25] The influence of asymmetry on mix in direct-drive inertial confinement fusion experiments
    Christensen, CR
    Wilson, DC
    Barnes, CW
    Grim, GP
    Morgan, GL
    Wilke, MD
    Marshall, FJ
    Glebov, VY
    Stoeckl, C
    PHYSICS OF PLASMAS, 2004, 11 (05) : 2771 - 2777
  • [26] Synthesis and characterization of diamond capsules for direct-drive inertial confinement fusion
    Kato, Hiroki
    Yamada, Hideaki
    Ohmagari, Shinya
    Chayahara, Akiyoshi
    Mokuno, Yoshiaki
    Fukuyama, Yuji
    Fujiwara, Neo
    Miyanishi, Kouhei
    Hironaka, Yoichiro
    Shigemori, Keisuke
    DIAMOND AND RELATED MATERIALS, 2018, 86 : 15 - 19
  • [27] Electric field and ionization-gradient effects on inertial-confinement-fusion implosions
    Amendt, P. A.
    Milovich, J. L.
    Wilks, S. C.
    Li, C. K.
    Petrasso, R. D.
    Seguin, F. H.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (12)
  • [28] Effect of cross-beam energy transfer on target-offset asymmetry in direct-drive inertial confinement fusion implosions
    Anderson, K. S.
    Forrest, C. J.
    Mannion, O. M.
    Marshall, F. J.
    Shah, R. C.
    Michel, D. T.
    Marozas, J. A.
    Radha, P. B.
    Edgell, D. H.
    Epstein, R.
    Goncharov, V. N.
    Knauer, J. P.
    Gatu Johnson, M.
    Laffite, S.
    PHYSICS OF PLASMAS, 2020, 27 (11)
  • [29] Uniformity of spherical shock wave dynamically stabilized by two successive laser profiles in direct-drive inertial confinement fusion implosions
    Temporal, M.
    Canaud, B.
    Garbett, W. J.
    Ramis, R.
    PHYSICS OF PLASMAS, 2015, 22 (10)
  • [30] Shell stability and conditions analyzed using a new method of extracting shell areal density maps from spectrally resolved images of direct-drive inertial confinement fusion implosions
    Johns, H. M.
    Mancini, R. C.
    Nagayama, T.
    Mayes, D. C.
    Tommasini, R.
    Smalyuk, V. A.
    Regan, S. P.
    Delettrez, J. A.
    PHYSICS OF PLASMAS, 2016, 23 (01)