Some Generalized Hadamard-Type Inequalities via Fractional Integrals

被引:6
|
作者
Bayraktar, B. [1 ]
Attaev, A. Kh [2 ]
Kudaev, V. Ch [3 ]
机构
[1] Bursa Uludag Univ, TR-16059 Bursa, Turkey
[2] RAS, Inst Appl Math & Automat, Kabardino Balkar Sci Ctr, 89a A Shortanova Str, Nalchik 360000, Russia
[3] RAS, Inst Comp Sci & Problems Reg Management, Kabardino Balkar Sci Ctr, 37A I Armand Str, Nalchik 360000, Russia
关键词
convex functions; s-convex functions; Hadamard inequality; Hö lder inequality; power-mean inequality; Riemann– Liouville fractional integrals;
D O I
10.3103/S1066369X21020018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish some generalized inequalities of the Hermite-Hadamard type using fractional Riemann-Liouville integrals for the class of s-convex functions in the first and second sense. We assume that second derivatives of these functions are convex and take on values at intermediate points of the interval under consideration. We prove that this approach reduces the absolute error of Hadamard-type inequalities by a multiple of the number of intermediate points. In a particular case, the obtained upper bounds for the Hadamard inequality coincide with those given in the literature.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [41] Hermite-Hadamard Type Inequalities for h-Convex Functions Via Generalized Fractional Integrals
    Ali, M. Aamir
    Budak, H.
    Abbas, M.
    Sarikaya, M. Z.
    Kashuri, A.
    JOURNAL OF MATHEMATICAL EXTENSION, 2020, 14 (04) : 187 - 234
  • [42] Some fractional Hermite–Hadamard-type inequalities for interval-valued coordinated functions
    Fangfang Shi
    Guoju Ye
    Dafang Zhao
    Wei Liu
    Advances in Difference Equations, 2021
  • [43] GENERALIZATION OF HADAMARD-TYPE TRAPEZOID INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATORS
    Bayraktar, B.
    Ozdemir, M. Emin
    UFA MATHEMATICAL JOURNAL, 2021, 13 (01): : 119 - 130
  • [44] New Hadamard-type integral inequalities via a general form of fractional integral operators
    Butt, Saad Ihsan
    Yousaf, Saba
    Akdemir, Ahmet Ocak
    Dokuyucu, Mustafa Ali
    CHAOS SOLITONS & FRACTALS, 2021, 148
  • [45] SOME RESULTS FOR HADAMARD-TYPE INEQUALITIES IN QUANTUM CALCULUS
    Taf, Sabrina
    Brahim, Kamel
    Riahi, Latifa
    MATEMATICHE, 2014, 69 (02): : 243 - 258
  • [46] Generalized Hermite-Hadamard type inequalities for generalized F-convex function via local fractional integrals
    Razzaq, Arslan
    Rasheed, Tahir
    Shaokat, Shahid
    CHAOS SOLITONS & FRACTALS, 2023, 168
  • [47] SOME BULLEN-TYPE INEQUALITIES FOR GENERALIZED FRACTIONAL INTEGRALS
    Zhao, Dafang
    Ali, Muhammad Aamir
    Budak, Hueseyin
    He, Zai-yin
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (04)
  • [48] Some New Ostrowski Type Inequalities for Generalized Fractional Integrals
    Yaldiz, Hatice
    Set, Erhan
    1ST INTERNATIONAL CONFERENCE ON MATHEMATICAL AND RELATED SCIENCES (ICMRS 2018), 2018, 1991
  • [49] Mellin transform analysis and integration by parts for Hadamard-type fractional integrals
    Butzer, PL
    Kilbas, AA
    Trujillo, JJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 270 (01) : 1 - 15
  • [50] Chebyshev type inequalities via generalized fractional conformable integrals
    Kottakkaran Sooppy Nisar
    Gauhar Rahman
    Khaled Mehrez
    Journal of Inequalities and Applications, 2019