Constrained Multi-Task Learning for Automated Essay Scoring

被引:0
|
作者
Cummins, Ronan [1 ]
Zhang, Meng [1 ]
Briscoe, Ted [1 ]
机构
[1] Univ Cambridge, Comp Lab, ALTA Inst, Cambridge, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Supervised machine learning models for automated essay scoring (AES) usually require substantial task-specific training data in order to make accurate predictions for a particular writing task. This limitation hinders their utility, and consequently their deployment in real-world settings. In this paper, we overcome this shortcoming using a constrained multi-task pairwise-preference learning approach that enables the data from multiple tasks to be combined effectively. Furthermore, contrary to some recent research, we show that high performance AES systems can be built with little or no task-specific training data. We perform a detailed study of our approach on a publicly available dataset in scenarios where we have varying amounts of task-specific training data and in scenarios where the number of tasks increases.
引用
收藏
页码:789 / 799
页数:11
相关论文
共 50 条
  • [21] An overview of multi-task learning
    Zhang, Yu
    Yang, Qiang
    NATIONAL SCIENCE REVIEW, 2018, 5 (01) : 30 - 43
  • [22] On Partial Multi-Task Learning
    He, Yi
    Wu, Baijun
    Wu, Di
    Wu, Xindong
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 1174 - 1181
  • [23] Pareto Multi-Task Learning
    Lin, Xi
    Zhen, Hui-Ling
    Li, Zhenhua
    Zhang, Qingfu
    Kwong, Sam
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [24] Federated Multi-Task Learning
    Smith, Virginia
    Chiang, Chao-Kai
    Sanjabi, Maziar
    Talwalkar, Ameet
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [25] Asynchronous Multi-Task Learning
    Baytas, Inci M.
    Yan, Ming
    Jain, Anil K.
    Zhou, Jiayu
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 11 - 20
  • [26] Calibrated Multi-Task Learning
    Nie, Feiping
    Hu, Zhanxuan
    Li, Xuelong
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 2012 - 2021
  • [27] An overview of multi-task learning
    Yu Zhang
    Qiang Yang
    National Science Review, 2018, 5 (01) : 30 - 43
  • [28] Boosted multi-task learning
    Chapelle, Olivier
    Shivaswamy, Pannagadatta
    Vadrevu, Srinivas
    Weinberger, Kilian
    Zhang, Ya
    Tseng, Belle
    MACHINE LEARNING, 2011, 85 (1-2) : 149 - 173
  • [29] Distributed Multi-Task Learning
    Wang, Jialei
    Kolar, Mladen
    Srebro, Nathan
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 751 - 760
  • [30] Parallel Multi-Task Learning
    Zhang, Yu
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2015, : 629 - 638