A modified simple iterative method for nonsymmetric algebraic Riccati equations arising in transport theory

被引:23
|
作者
Bao, Liang
Lin, Yiqin [1 ]
Wei, Yimin
机构
[1] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Peoples R China
[2] Fudan Univ, Inst Math, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Minist Educ, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
nonsymmetric algebraic Riccati equations; simple iterative method; minimal positive solution;
D O I
10.1016/j.amc.2006.02.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a modified simple iterative method for nonsymmetric algebraic Riccati equations arising in transport theory. It is similar to the method proposed by Lu in [L.Z. Lu, Solution form and simple iteration of a nonsymmetric algebraic Riccati equation arising in transport theory, SIAM J. Matrix Anal. Appl. 26 (2005) 679-685]. The theoretical results and numerical experiments show that the modified version is more efficient than its counterpart. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1499 / 1504
页数:6
相关论文
共 50 条
  • [21] A class of ADI method for the nonsymmetric coupled algebraic Riccati equations
    Guan, Jinrui
    Zhang, Yu
    Wen, Ruiping
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (05) : 4519 - 4536
  • [22] Convergence Rates of a Class of Predictor-Corrector Iterations for the Nonsymmetric Algebraic Riccati Equation Arising in Transport Theory
    Dong, Ning
    Jin, Jicheng
    Yu, Bo
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2017, 9 (04) : 944 - 963
  • [23] Numerical Study on Nonsymmetric Algebraic Riccati Equations
    Changfeng Ma
    Huaize Lu
    Mediterranean Journal of Mathematics, 2016, 13 : 4961 - 4973
  • [24] Numerical Study on Nonsymmetric Algebraic Riccati Equations
    Ma, Changfeng
    Lu, Huaize
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) : 4961 - 4973
  • [25] A new class of nonsymmetric algebraic Riccati equations
    Guo, Chun-Hua
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) : 636 - 649
  • [26] A new linearized implicit iteration method for nonsymmetric algebraic Riccati equations
    Lu H.
    Ma C.
    Journal of Applied Mathematics and Computing, 2016, 50 (1-2) : 227 - 241
  • [27] A modified Newton-Shamanskii method for a nonsymmetric algebraic Riccati equation
    Li, Jian-Lei
    Zhang, Li-Tao
    Li, Xu-Dong
    Li, Qing-Bin
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (02) : 380 - 393
  • [28] A Parameterized Class of Complex Nonsymmetric Algebraic Riccati Equations
    Dong, Liqiang
    Li, Jicheng
    Liu, Xuenian
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2021, 14 (03): : 650 - 691
  • [29] Nonsymmetric Algebraic Riccati Equations under the Tensor Product
    Shao, Xiongyu
    Wei, Yimin
    Yuan, Jin-Yun
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2023, 44 (06) : 545 - 563
  • [30] Nonsymmetric Algebraic Riccati Theory: A Matrix Pencil Approach
    Jungers, Marc
    Oara, Cristian
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 1229 - 1234