Differentially private high dimensional sparse covariance matrix estimation

被引:2
|
作者
Wang, Di [1 ]
Xu, Jinhui [2 ]
机构
[1] King Abdullah Univ Sci & Technol, Div Comp Elect & Math Sci & Engn, Thuwal 23955, Saudi Arabia
[2] SUNY Buffalo, Dept Comp Sci & Engn, 338 Davis Hall, Buffalo, NY 14260 USA
基金
美国国家科学基金会;
关键词
Differential privacy; Sparse covariance estimation; High dimensional statistics; OPTIMAL RATES; CONVERGENCE;
D O I
10.1016/j.tcs.2021.03.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we study the problem of estimating the covariance matrix under differential privacy, where the underlying covariance matrix is assumed to be sparse and of high dimensions. We propose a new method, called DP-Thresholding, to achieve a non-trivial l(2)-norm based error bound whose dependence on the dimension drops to logarithmic instead of polynomial, it is significantly better than the existing ones, which add noise directly to the empirical covariance matrix. We also extend the l(2)-norm based error bound to a general l(w)-norm based one for any 1 <= w <= infinity, and show that they share the same upper bound asymptotically. Our approach can be easily extended to local differential privacy. Experiments on the synthetic datasets show results that are consistent with theoretical claims. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:119 / 130
页数:12
相关论文
共 50 条
  • [1] Lower Bound of Locally Differentially Private Sparse Covariance Matrix Estimation
    Wang, Di
    Xu, Jinhui
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4788 - 4794
  • [2] DIFFERENTIALLY PRIVATE SPARSE INVERSE COVARIANCE ESTIMATION
    Wang, Di
    Huai, Mengdi
    Xu, Jinhui
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 1139 - 1143
  • [3] Sparse covariance matrix estimation in high-dimensional deconvolution
    Belomestny, Denis
    Trabs, Mathias
    Tsybakov, Alexandre B.
    BERNOULLI, 2019, 25 (03) : 1901 - 1938
  • [4] Differentially Private Sparse Covariance Matrix Estimation under Lower-Bounded Moment Assumption
    Li, Huimin
    Wang, Jinru
    MATHEMATICS, 2023, 11 (17)
  • [5] The Sparse Matrix Transform for Covariance Estimation and Analysis of High Dimensional Signals
    Cao, Guangzhi
    Bachega, Leonardo R.
    Bouman, Charles A.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (03) : 625 - 640
  • [6] Differentially Private Covariance Estimation
    Amin, Kareem
    Dick, Travis
    Kulesza, Alex
    Medina, Andres Mufioz
    Vassilvitskii, Sergei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [7] Sparse covariance matrix estimation for ultrahigh dimensional data
    Liang, Wanfeng
    Wu, Yue
    Chen, Hui
    STAT, 2022, 11 (01):
  • [8] Sparse estimation of a covariance matrix
    Bien, Jacob
    Tibshirani, Robert J.
    BIOMETRIKA, 2011, 98 (04) : 807 - 820
  • [9] High-dimensional covariance matrix estimation
    Lam, Clifford
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2020, 12 (02)
  • [10] A Sparse Approximate Factor Model for High-Dimensional Covariance Matrix Estimation and Portfolio Selection
    Daniele, Maurizio
    Pohlmeier, Winfried
    Zagidullina, Aygul
    JOURNAL OF FINANCIAL ECONOMETRICS, 2024,