Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production

被引:315
|
作者
Brett, Michael T. [1 ]
Kainz, Martin J. [2 ]
Taipale, Sami J. [1 ]
Seshan, Hari [1 ]
机构
[1] Univ Washington, Dept Civil Engn, Seattle, WA 98195 USA
[2] Donau Univ Krems, WasserCluster Lunz Biol Stn, A-3293 Lunz Am See, Austria
基金
美国国家科学基金会;
关键词
Daphnia; fatty acids; nutritional ecology; planktonic food web; TERRESTRIAL ORGANIC-CARBON; STABLE-ISOTOPE ANALYSIS; AQUATIC FOOD WEBS; FATTY-ACIDS; LAKES; NUTRITION; SUPPORT; C-13; ECOSYSTEMS; PATTERNS;
D O I
10.1073/pnas.0904129106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Terrestrial organic matter inputs have long been thought to play an important role in aquatic food web dynamics. Results from recent whole lake (13)C addition experiments suggest terrestrial particulate organic carbon (t-POC) inputs account for a disproportionate portion of zooplankton production. For example, several studies concluded that although t-POC only represented approximate to 20% of the flux of particulate carbon available to herbivorous zooplankton, this food source accounted for approximate to 50% of the C incorporated by zooplankton. We tested the direct dietary impact of t-POC (from the leaves of riparian vegetation) and various phytoplankton on Daphnia magna somatic growth, reproduction, growth efficiency, and lipid composition. By itself, t-POC was a very poor quality resource compared to cryptophytes, diatoms, and chlorophytes, but t-POC had similar food quality compared to cyanobacteria. Small additions of high quality Cryptomonas ozolinii to t-POC-dominated diets greatly increased Daphnia growth and reproduction. When offered alone, t-POC resulted in a Daphnia growth efficiency of 5 +/- 1%, whereas 100% Cryptomonas and Scenedesmus obliquus diets resulted in growth efficiencies of 46 +/- 8% (+/- SD) and 36 +/- 3%, respectively. When offered in a 50:50 mixed diet with Cryptomonas or Scenedesmus, the t-POC fraction resulted in a partial growth efficiency of 22 +/- 9% and 15 +/- 6%, respectively. Daphnia that obtained 80% of their available food from t-POC assimilated 84% of their fatty acids from the phytoplankton component of their diet. Overall, our results suggest Daphnia selectively allocate phytoplankton-derived POC and lipids to enhance somatic growth and reproduction, while t-POC makes a minor contribution to zooplankton production.
引用
收藏
页码:21197 / 21201
页数:5
相关论文
共 50 条
  • [21] METHOD FOR STUDY OF FOODS OF HERBIVOROUS ZOOPLANKTON
    DEINFANTE, A
    TRANSACTIONS OF THE AMERICAN MICROSCOPICAL SOCIETY, 1978, 97 (02): : 256 - 258
  • [22] CONVERSION OF PHYTOPLANKTON TO ZOOPLANKTON
    GIBOR, A
    NATURE, 1957, 179 (4573) : 1304 - 1304
  • [23] Nutrient uptake plasticity in phytoplankton sustains future ocean net primary production
    Kwon, Eun Young
    Sreeush, M. G.
    Timmermann, Axel
    Karl, David M.
    Church, Matthew J.
    Lee, Sun-Seon
    Yamaguchi, Ryohei
    SCIENCE ADVANCES, 2022, 8 (51)
  • [24] Relative contribution of autochthonous and allochthonous carbon to limnetic zooplankton: A new cross-system approach
    Mohamed, Mohamed N.
    Taylor, William D.
    FUNDAMENTAL AND APPLIED LIMNOLOGY, 2009, 175 (02) : 113 - 124
  • [25] Quantification of allochthonous nutrient input into freshwater bodies by herbivorous waterbirds
    Hahn, S.
    Bauer, S.
    Klaassen, M.
    FRESHWATER BIOLOGY, 2008, 53 (01) : 181 - 193
  • [26] Importance of allochthonous phytoplankton in a coastal freshwater lake
    Romo, S
    INTERNATIONAL ASSOCIATION OF THEORETICAL AND APPLIED LIMNOLOGY, VOL 26, PT 2, 1997, 26 : 610 - 614
  • [27] Drivers of phytoplankton, bacterioplankton, and zooplankton carbon biomass in tropical hydroelectric reservoirs
    Silva, Lucia H. S.
    Huszar, Vera L. M.
    Marinho, Marcelo M.
    Rangel, Luciana M.
    Brasil, Jandeson
    Domingues, Carolina D.
    Branco, Christina C.
    Roland, Fabio
    LIMNOLOGICA, 2014, 48 : 1 - 10
  • [28] Diet-specific biomarkers show that high-quality phytoplankton fuels herbivorous zooplankton in large boreal lakes
    Galloway, Aaron W. E.
    Taipale, Sami J.
    Hiltunen, Minna
    Peltomaa, Elina
    Strandberg, Ursula
    Brett, Michael T.
    Kankaala, Paula
    FRESHWATER BIOLOGY, 2014, 59 (09) : 1902 - 1915
  • [29] PHYTOPLANKTON, ZOOPLANKTON AND BACTERIA - STANDING CROP AND PRODUCTION RELATIONSHIPS IN A EUTROPHIC LAKE
    COVENEY, MF
    CRONBERG, G
    ENELL, M
    LARSSON, K
    OLOFSSON, L
    OIKOS, 1977, 29 (01) : 5 - 21
  • [30] Distribution and Feeding of Herbivorous Zooplankton in the Laptev Sea
    Arashkevich, E. G.
    Drits, A. V.
    Pasternak, A. F.
    Flint, M. V.
    Demidov, A. B.
    Amelina, A. B.
    Kravchishina, M. D.
    Sukhanova, I. N.
    Shchuka, S. A.
    OCEANOLOGY, 2018, 58 (03) : 381 - 395