Charge carrier concentration and offset voltage in quasi-free-standing monolayer chemical vapor deposition graphene on SiC

被引:32
|
作者
Ciuk, Tymoteusz [1 ,2 ]
Caban, Piotr [1 ]
Strupinski, Wlodek [1 ]
机构
[1] Inst Elect Mat Technol, Wolczynska 133, PL-01919 Warsaw, Poland
[2] Warsaw Univ Technol, Inst Microelect & Optoelect, Koszykowa 75, PL-00662 Warsaw, Poland
关键词
ELECTRONIC-PROPERTIES; EPITAXIAL GRAPHENE; POLARIZATION; POLYTYPES;
D O I
10.1016/j.carbon.2016.01.093
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Epitaxial Chemical Vapor Deposition growth of graphene on silicon carbide offers the maturity and reliability expected for large-scale fabrication of graphene-based devices. In particular, the ultimate challenge of graphene synthesis on SiC, i.e. quasi-free-standing monolayer graphene which comes through hydrogen atom intercalation of the sole buffer layer grown on the Si-face of SiC, offers high carrier mobility (as high as 6600 [cm(2)/Vs]) and electrical stability throughout the device processing cycle. In this report, we present extensive statistics of the electrical properties of QFS-monolayer graphene grown on 4H(0001) and 6H(0001) semi-insulating 10 mm x 10 mm substrates, being a result of 110 individual processes. The adopted explanation for the origin of the as-grown doping level in epitaxial graphene based on the spontaneous polarization of hexagonal SiC and its most up-to-date values is reaffirmed. We introduce the issue of the step-edge-induced offset voltage radial dependence and confront it with the morphological analysis of the average step edge height and terrace width, all related to the place of origin of a specific sample within a 4-inch SiC wafer. Finally, we conclude that within the step edge area QFS-monolayer graphene is statistically nearly half as resistive as the previously reported QFS-bilayer graphene. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:431 / 438
页数:8
相关论文
共 50 条
  • [1] Ambipolar charge transport in quasi-free-standing monolayer graphene on SiC obtained by gold intercalation
    Kim, Kyung Ho
    He, Hans
    Struzzi, Claudia
    Zakharov, Alexei
    Giusca, Cristina E.
    Tzalenchuk, Alexander
    Park, Yung Woo
    Yakimova, Rositsa
    Kubatkin, Sergey
    Lara-Avila, Samuel
    PHYSICAL REVIEW B, 2020, 102 (16)
  • [2] Step-edge-induced resistance anisotropy in quasi-free-standing bilayer chemical vapor deposition graphene on SiC
    Ciuk, Tymoteusz
    Cakmakyapan, Semih
    Ozbay, Ekmel
    Caban, Piotr
    Grodecki, Kacper
    Krajewska, Aleksandra
    Pasternak, Iwona
    Szmidt, Jan
    Strupinski, Wlodek
    JOURNAL OF APPLIED PHYSICS, 2014, 116 (12)
  • [3] Quantum Hall Effect and Carrier Scattering in Quasi-Free-Standing Monolayer Graphene
    Tanabe, Shinichi
    Takamura, Makoto
    Harada, Yuichi
    Kageshima, Hiroyuki
    Hibino, Hiroki
    APPLIED PHYSICS EXPRESS, 2012, 5 (12)
  • [4] Homogeneous Large-Area Quasi-Free-Standing Monolayer and Bilayer Graphene on SiC
    Pakdehi, D. Momeni
    Pierz, K.
    Wundrack, S.
    Aprojanz, J.
    Nguyen, T. T. N.
    Dziomba, T.
    Hohls, F.
    Bakin, A.
    Stosch, R.
    Tegenkamp, C.
    Ahlers, F. J.
    Schumacher, H. W.
    ACS APPLIED NANO MATERIALS, 2019, 2 (02) : 844 - 852
  • [5] Charge neutrality of quasi-free-standing monolayer graphene induced by the intercalated Sn layer
    Kim, Hidong
    Dugerjav, Otgonbayar
    Lkhagvasuren, Altaibaatar
    Seo, Jae M.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (13)
  • [6] Induced growth of quasi-free-standing graphene on SiC substrates
    Liu, Zhenxing
    Su, Zhen
    Li, Qingbo
    Sun, Li
    Zhang, Xue
    Yang, Zhiyuan
    Liu, Xizheng
    Li, Yingxian
    Li, Yanlu
    Yu, Fapeng
    Zhao, Xian
    RSC ADVANCES, 2019, 9 (55) : 32226 - 32231
  • [7] Synthesis of quasi-free-standing bilayer graphene nanoribbons on SiC surfaces
    Oliveira, Myriano H., Jr.
    Lopes, Joao Marcelo J.
    Schumann, Timo
    Galves, Lauren A.
    Ramsteiner, Manfred
    Berlin, Katja
    Trampert, Achim
    Riechert, Henning
    NATURE COMMUNICATIONS, 2015, 6
  • [8] Synthesis of quasi-free-standing bilayer graphene nanoribbons on SiC surfaces
    Myriano H. Oliveira, Jr.
    Joao Marcelo J. Lopes
    Timo Schumann
    Lauren A. Galves
    Manfred Ramsteiner
    Katja Berlin
    Achim Trampert
    Henning Riechert
    Nature Communications, 6
  • [9] Quasi-Free-Standing Epitaxial Graphene on SiC Obtained by Hydrogen Intercalation
    Riedl, C.
    Coletti, C.
    Iwasaki, T.
    Zakharov, A. A.
    Starke, U.
    PHYSICAL REVIEW LETTERS, 2009, 103 (24)
  • [10] Self organization of a hexagonal network of quasi-free-standing monolayer graphene nanoribbons
    Murata, Y.
    Takamura, M.
    Kageshima, H.
    Hibino, H.
    PHYSICAL REVIEW B, 2013, 87 (16):