Reply to 'Feasibility of neural network approach in spectral mixture analysis of reflectance spectra'

被引:1
|
作者
Bennun, L. [1 ]
Delgado, A. [1 ,2 ]
机构
[1] Univ Concepcion, Dept Fis, Concepcion, Chile
[2] Univ Concepcion, Ctr Quantum Opt & Quantum Informat, Concepcion, Chile
关键词
Spectroscopic analysis;
D O I
10.1080/01431160902800233
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Neural Networks (NN) have proliferated during recent years, and are widely used in the scientific environment, particularly providing interpretation of results acquired by spectroscopic techniques. Separately and independently, these results were historically analysed and interpreted with 'classical techniques', derived from statistical formulations. The purpose of this reply is to analyse under what conditions NN methods have a better performance than the statistical methods, when it is necessary to process a spectrum obtained by a linear spectroscopic technique. The use of Neural Networks methods instead of purely statistical methods for linear spectra analysis and interpretation is discussed.
引用
收藏
页码:4905 / 4907
页数:3
相关论文
共 50 条
  • [31] Quantitating Wastewater Characteristic Parameters Using Neural Network Regression Modeling on Spectral Reflectance
    Fortela, Dhan Lord B.
    Travis, Armani
    Mikolajczyk, Ashley P.
    Sharp, Wayne
    Revellame, Emmanuel
    Holmes, William
    Hernandez, Rafael
    Zappi, Mark E.
    Kalogerakis, Nicolas
    Chrysikopoulos, Constantinos V.
    CLEAN TECHNOLOGIES, 2023, 5 (04): : 1186 - 1202
  • [32] Spectral Reflectance Reconstruction Based on BP Neural Network and the Improved Sparrow Search Algorithm
    Zhang, Lu
    Wang, Chengqun
    Fang, Mengyuan
    Xu, Weiqiang
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2022, E105 (08) : 1175 - 1179
  • [33] Architecture of Neural Network Complex for Forecasting and Analysis of Time Series based on the Neural Network Spectral Analysis
    Ivan, Tsmots
    Mykola, Medykovskyi
    Bohdan, Andriietskyi
    Oleksa, Skorokhoda
    PROCEEDINGS OF XIIITH INTERNATIONAL CONFERENCE - EXPERIENCE OF DESIGNING AND APPLICATION OF CAD SYSTEMS IN MICROELECTRONICS CADSM 2015, 2015, : 236 - 238
  • [34] Artificial neural network approach to automatic classification of stellar spectra
    Rodríguez, A
    Dafonte, C
    Arcay, B
    Manteiga, M
    ARTIFICIAL NEURAL NETS PROBLEM SOLVING METHODS, PT II, 2003, 2687 : 639 - 646
  • [35] An Artificial Neural Network approach to classify SDSS stellar spectra
    Schierscher, F.
    Paunzen, E.
    ASTRONOMISCHE NACHRICHTEN, 2011, 332 (06) : 597 - 601
  • [36] Hopfield Neural Network Approach for Supervised Nonlinear Spectral Unmixing
    Li, Jing
    Li, Xiaorun
    Huang, Bormin
    Zhao, Liaoying
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (07) : 1002 - 1006
  • [37] NEURAL-NETWORK APPROACH TO SPECTRAL ESTIMATION OF HARMONIC PROCESSES
    MARTINELLI, G
    PERFETTI, R
    IEE PROCEEDINGS-G CIRCUITS DEVICES AND SYSTEMS, 1993, 140 (02): : 95 - 100
  • [38] Mass spectral search method using the neural network approach
    Tong, CS
    Cheng, KC
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1999, 49 (02) : 135 - 150
  • [39] Temperature analysis of Coherent Anti-Stokes Raman spectra using a neural network approach
    vanderSteen, HJL
    Black, JD
    NEURAL COMPUTING & APPLICATIONS, 1997, 5 (04): : 248 - 257
  • [40] Temperature analysis of Coherent Anti-Stokes Raman spectra using a neural network approach
    H. J. L. van der Steen
    J. D. Black
    Neural Computing & Applications, 1997, 5 : 248 - 257