On nonparametric kernel estimation of the mode of the regression function in the random design model

被引:11
|
作者
Ziegler, K [1 ]
机构
[1] Univ Munich, Inst Math, D-80333 Munich, Germany
关键词
nonparametric regression; random design; mode; kernel smoothing; Nadaraya-Watson estimator; data-dependent bandwidths; estimation of derivatives; consistency; asymptotic normality;
D O I
10.1080/10485250215321
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the nonparametric regression model with random design, where the regression function m is given by m(x) = E(Y \ X = x), estimation of the location theta (mode) of a unique maximum of m by the location (theta) over cap of a maximum of the Nadaraya-Watson kernel estimator (m) over cap for the curve m is considered. Within this setting, we obtain consistency and asymptotic normality results for (theta) over cap under very mild assumptions on m, the design density g of X and the kernel K. The bandwidths being considered in the present work are data-dependent of the type being generated by plug-in methods. The estimation of the size of the maximum is also considered as well as the estimation of a unique zero of the regression function. Applied to the estimation of the mode of a density, our methods yield some improvements on known results. As a by-product, we obtain some uniform consistency results for the (higher) derivatives of the Nadaraya-Watson estimator with a certain additional uniformity in the bandwiths. The proofs of those rely heavily on empirical process methods.
引用
收藏
页码:749 / 774
页数:26
相关论文
共 50 条
  • [41] Empirical likelihood inference for censored median regression model via nonparametric kernel estimation
    Zhao, Yichuan
    Chen, Feiming
    JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (02) : 215 - 231
  • [42] Nonparametric estimation of the mode of a distribution of random curves
    Gasser, T
    Hall, P
    Presnell, B
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 : 681 - 691
  • [43] Pointwise interval estimation of the regression function for fix-designed nonparametric regression model
    Li, Na
    Xu, Xing-Zhong
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2010, 30 (10): : 1245 - 1248
  • [44] Nonparametric Estimation of the Conditional Distribution Function For Surrogate Data by the Regression Model
    Metmous, Imane
    Attouch, Mohammed Kadi
    Mechab, Boubaker
    Merouan, Torkia
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2021, 16 (01): : 55 - 74
  • [46] Model-calibration estimation of the distribution function using nonparametric regression
    M. Rueda
    I. Sánchez-Borrego
    A. Arcos
    S. Martínez
    Metrika, 2010, 71 : 33 - 44
  • [47] Model-calibration estimation of the distribution function using nonparametric regression
    Rueda, M.
    Sanchez-Borrego, I.
    Arcos, A.
    Martinez, S.
    METRIKA, 2010, 71 (01) : 33 - 44
  • [48] Bivariate nonparametric estimation of the Pickands dependence function using Bernstein copula with kernel regression approach
    Ahmadabadi, Alireza
    Ucer, Burcu Hudaverdi
    COMPUTATIONAL STATISTICS, 2017, 32 (04) : 1515 - 1532
  • [49] Bivariate nonparametric estimation of the Pickands dependence function using Bernstein copula with kernel regression approach
    Alireza Ahmadabadi
    Burcu Hudaverdi Ucer
    Computational Statistics, 2017, 32 : 1515 - 1532
  • [50] Kernel estimation of regression function gradient
    Kroupova, Monika
    Horova, Ivana
    Kolacek, Jan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (01) : 135 - 151