Plasmonic and silicon spherical nanoparticle antireflective coatings

被引:110
|
作者
Baryshnikova, K. V. [1 ]
Petrov, M. I. [1 ,2 ]
Babicheva, V. E. [1 ,3 ]
Belov, P. A. [1 ]
机构
[1] ITMO Univ, Kronverkskiy 49, St Petersburg 197101, Russia
[2] St Petersburg Acad Univ RAS, Khlopina 8-3, St Petersburg 194021, Russia
[3] Georgia State Univ, Ctr Nanoopt, POB 3965, Atlanta, GA 30302 USA
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
ATOMIC-LAYER DEPOSITION; SOLAR-CELLS; SILVER NANOPARTICLES; DIELECTRIC FUNCTIONS; SURFACE PASSIVATION; OPTICAL-PROPERTIES; LIGHT-SCATTERING; SI; OXIDATION; SPECTROSCOPY;
D O I
10.1038/srep22136
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric-and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Improvement of the efficiency of the silicon solar cells by silicon incorporated diamond-like carbon antireflective coatings
    Buršíková, V.
    Sládek, P.
    St'ahel, P.
    Zajíčková, L.
    Journal of Non-Crystalline Solids, 2002, 299-302 : 1147 - 1151
  • [22] Optimizing Plasmonic Silicon Photovoltaics with Ag and Au Nanoparticle Mixtures
    Wang, Peng Hui
    Millard, Morgan
    Brolo, Alexandre G.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (11): : 5889 - 5895
  • [23] Antireflective and highly reflective coatings with self-cleaning properties from polymer and nanoparticle multilayers
    Wu, Zhizhong
    Cebeci, F.
    Zhao, L.
    Cohen, R. E.
    Rubner, M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [24] All-Nanoparticle Monolayer Broadband Antireflective and Self-Cleaning Transparent Glass Coatings
    Gruzd, Alexey
    Tokarev, Alexander
    Tokarev, Igor
    Kuksenkov, Dmitri
    Minko, Sergiy
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (05) : 6767 - 6777
  • [25] All-Nanoparticle Monolayer Broadband Antireflective and Self-Cleaning Transparent Glass Coatings
    Gruzd, Alexey
    Tokarev, Alexander
    Tokarev, Igor
    Kuksenkov, Dmitri
    Minko, Sergiy
    ACS Applied Materials and Interfaces, 2021, 13 (05): : 6767 - 6777
  • [26] Mechanically robust antireflective coatings
    Sadaf Bashir Khan
    Hui Wu
    Xiaochen Huai
    Sumeng Zou
    Yuehua Liu
    Zhengjun Zhang
    Nano Research, 2018, 11 : 1699 - 1713
  • [27] POROUS FLUORIDE ANTIREFLECTIVE COATINGS
    THOMAS, IM
    APPLIED OPTICS, 1988, 27 (16): : 3356 - 3358
  • [28] Developing polymeric antireflective coatings
    Crawford, Lynley J.
    Edmonds, Neil R.
    Plimmer, Peter N.
    Lowy, Jonathan
    NOVEL OPTICAL SYSTEMS DESIGN AND OPTIMIZATION XI, 2008, 7061
  • [29] Application of amorphous carbon based materials as antireflective coatings on crystalline silicon solar cells
    da Silva, D. S.
    Cortes, A. D. S.
    Oliveira, M. H., Jr.
    Motta, E. F.
    Viana, G. A.
    Mei, P. R.
    Marques, F. C.
    JOURNAL OF APPLIED PHYSICS, 2011, 110 (04)
  • [30] Mechanically robust antireflective coatings
    Khan, Sadaf Bashir
    Wu, Hui
    Huai, Xiaochen
    Zou, Sumeng
    Liu, Yuehua
    Zhang, Zhengjun
    NANO RESEARCH, 2018, 11 (03) : 1699 - 1713