Rainfall Teleconnections with Indo-Pacific Variability in the WCRP CMIP3 Models

被引:55
|
作者
Cai, Wenju
Sullivan, Arnold
Cowan, Tim
机构
[1] CSIRO Marine & Atmospher Res, Aspendale, Vic, Australia
[2] CSIRO, N Ryde, NSW 2113, Australia
关键词
INDIAN-OCEAN DIPOLE; 20TH-CENTURY CLIMATE SIMULATIONS; NINO SOUTHERN-OSCILLATION; SEA-SURFACE TEMPERATURE; EL-NINO; COUPLED MODEL; INTERCOMPARISON PROJECT; AUSTRALIAN RAINFALL; ATMOSPHERIC BRIDGE; MONSOON RAINFALL;
D O I
10.1175/2009JCLI2694.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The present study assesses the ability of climate models to simulate rainfall teleconnections with the El Nino-Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD). An assessment is provided on 24 climate models that constitute phase 3 of the World Climate Research Programme's Coupled Model Inter-comparison Project (WCRP CMIP3), used in the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC). The strength of the ENSO-rainfall teleconnection, defined as the correlation between rainfall and Nino-3.4, is overwhelmingly controlled by the amplitude of ENSO signals relative to stochastic noise, highlighting the importance of realistically simulating this parameter. Because ENSO influences arise from the movement of convergence zones from their mean positions, the well-known equatorial Pacific climatological sea surface temperature (SST) and ENSO cold tongue anomaly biases lead to systematic errors. The climatological SSTs, which are far too cold along the Pacific equator, lead to a complete "nonresponse to ENSO'' along the central and/or eastern equatorial Pacific in the majority of models. ENSO anomalies are also too equatorially confined and extend too far west, with linkages to a weakness in the teleconnection with Hawaii boreal winter rainfall and an inducement of a teleconnection with rainfall over west Papua New Guinea in austral summer. Another consequence of the ENSO cold tongue bias is that the majority of models produce too strong a coherence between SST anomalies in the west, central, and eastern equatorial Pacific. Consequently, the models' ability in terms of producing differences in the impacts by ENSO from those by ENSO Modoki is reduced. Similarly, the IOD-rainfall teleconnection strengthens with an intensification of the IOD relative to the stochastic noise. A significant relationship exists between intermodel variations of IOD-ENSO coherence and intermodel variations of the ENSO amplitude in a small subset of models in which the ENSO anomaly structure and ENSO signal transmission to the Indian Ocean are better simulated. However, using all but one model (defined as an outlier) there is no systematic linkage between ENSO amplitude and IOD-ENSO coherence. Indeed, the majority of models produce an ENSO-IOD coherence lower than the observed, supporting the notion that the Indian Ocean has the ability to generate independent variability and that ENSO is not the only trigger of the IOD. Although models with a stronger IOD amplitude and rainfall teleconnection tend to have a greater ENSO amplitude, there is no causal relationship; instead this feature reflects a commensurate strength of the Bjerknes feedback in both the Indian and Pacific Oceans.
引用
收藏
页码:5046 / 5071
页数:26
相关论文
共 50 条
  • [21] Boreal-winter teleconnections with tropical Indo-Pacific rainfall in HighResMIP historical simulations from the PRIMAVERA project
    Molteni, Franco
    Roberts, Christopher D.
    Senan, Retish
    Keeley, Sarah P. E.
    Bellucci, Alessio
    Corti, Susanna
    Franco, Ramon Fuentes
    Haarsma, Rein
    Levine, Xavier
    Putrasahan, Dian
    Roberts, Malcolm J.
    Terray, Laurent
    [J]. CLIMATE DYNAMICS, 2020, 55 (7-8) : 1843 - 1873
  • [22] Boreal-winter teleconnections with tropical Indo-Pacific rainfall in HighResMIP historical simulations from the PRIMAVERA project
    Franco Molteni
    Christopher D. Roberts
    Retish Senan
    Sarah P. E. Keeley
    Alessio Bellucci
    Susanna Corti
    Ramon Fuentes Franco
    Rein Haarsma
    Xavier Levine
    Dian Putrasahan
    Malcolm J. Roberts
    Laurent Terray
    [J]. Climate Dynamics, 2020, 55 : 1843 - 1873
  • [23] Western pacific warm pool and ENSO asymmetry in CMIP3 models
    Sun Yan
    Sun, De-Zheng
    Wu Lixin
    Wang Fan
    [J]. ADVANCES IN ATMOSPHERIC SCIENCES, 2013, 30 (03) : 940 - 953
  • [24] Indo-Pacific remote forcing in summer rainfall variability over the South China Sea
    Zhuoqi He
    Renguang Wu
    [J]. Climate Dynamics, 2014, 42 : 2323 - 2337
  • [25] Indo-Pacific remote forcing in summer rainfall variability over the South China Sea
    He, Zhuoqi
    Wu, Renguang
    [J]. CLIMATE DYNAMICS, 2014, 42 (9-10) : 2323 - 2337
  • [26] The Global Monsoon Variability Simulated by CMIP3 Coupled Climate Models
    Kim, Hyung-Jin
    Wang, Bin
    Ding, Qinghua
    [J]. JOURNAL OF CLIMATE, 2008, 21 (20) : 5271 - 5294
  • [27] Thermal variability of the Indo-Pacific warm pool
    Lin, Chun-Yi
    Ho, Chung-Ru
    Lee, Yung-Hsiang
    Kuo, Nan-Jung
    Liang, Shin-Jye
    [J]. GLOBAL AND PLANETARY CHANGE, 2013, 100 : 234 - 244
  • [28] Variability in the Concentration of Lithium in the Indo-Pacific Ocean
    Steiner, Zvi
    Landing, William M.
    Bohlin, Madeleine S.
    Greaves, Mervyn
    Prakash, Satya
    Vinayachandran, P. N.
    Achterberg, Eric P.
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2022, 36 (06)
  • [29] Heat budget of the south-central equatorial Pacific in CMIP3 models
    Liu Xiangcui
    Liu Hailong
    [J]. ADVANCES IN ATMOSPHERIC SCIENCES, 2014, 31 (03) : 669 - 680
  • [30] South Asian summer rainfall from CMIP3 to CMIP6 models: biases and improvements
    He, Linqiang
    Zhou, Tianjun
    Chen, Xiaolong
    [J]. CLIMATE DYNAMICS, 2023, 61 (3-4) : 1049 - 1061