Rainfall Teleconnections with Indo-Pacific Variability in the WCRP CMIP3 Models

被引:55
|
作者
Cai, Wenju
Sullivan, Arnold
Cowan, Tim
机构
[1] CSIRO Marine & Atmospher Res, Aspendale, Vic, Australia
[2] CSIRO, N Ryde, NSW 2113, Australia
关键词
INDIAN-OCEAN DIPOLE; 20TH-CENTURY CLIMATE SIMULATIONS; NINO SOUTHERN-OSCILLATION; SEA-SURFACE TEMPERATURE; EL-NINO; COUPLED MODEL; INTERCOMPARISON PROJECT; AUSTRALIAN RAINFALL; ATMOSPHERIC BRIDGE; MONSOON RAINFALL;
D O I
10.1175/2009JCLI2694.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The present study assesses the ability of climate models to simulate rainfall teleconnections with the El Nino-Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD). An assessment is provided on 24 climate models that constitute phase 3 of the World Climate Research Programme's Coupled Model Inter-comparison Project (WCRP CMIP3), used in the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC). The strength of the ENSO-rainfall teleconnection, defined as the correlation between rainfall and Nino-3.4, is overwhelmingly controlled by the amplitude of ENSO signals relative to stochastic noise, highlighting the importance of realistically simulating this parameter. Because ENSO influences arise from the movement of convergence zones from their mean positions, the well-known equatorial Pacific climatological sea surface temperature (SST) and ENSO cold tongue anomaly biases lead to systematic errors. The climatological SSTs, which are far too cold along the Pacific equator, lead to a complete "nonresponse to ENSO'' along the central and/or eastern equatorial Pacific in the majority of models. ENSO anomalies are also too equatorially confined and extend too far west, with linkages to a weakness in the teleconnection with Hawaii boreal winter rainfall and an inducement of a teleconnection with rainfall over west Papua New Guinea in austral summer. Another consequence of the ENSO cold tongue bias is that the majority of models produce too strong a coherence between SST anomalies in the west, central, and eastern equatorial Pacific. Consequently, the models' ability in terms of producing differences in the impacts by ENSO from those by ENSO Modoki is reduced. Similarly, the IOD-rainfall teleconnection strengthens with an intensification of the IOD relative to the stochastic noise. A significant relationship exists between intermodel variations of IOD-ENSO coherence and intermodel variations of the ENSO amplitude in a small subset of models in which the ENSO anomaly structure and ENSO signal transmission to the Indian Ocean are better simulated. However, using all but one model (defined as an outlier) there is no systematic linkage between ENSO amplitude and IOD-ENSO coherence. Indeed, the majority of models produce an ENSO-IOD coherence lower than the observed, supporting the notion that the Indian Ocean has the ability to generate independent variability and that ENSO is not the only trigger of the IOD. Although models with a stronger IOD amplitude and rainfall teleconnection tend to have a greater ENSO amplitude, there is no causal relationship; instead this feature reflects a commensurate strength of the Bjerknes feedback in both the Indian and Pacific Oceans.
引用
收藏
页码:5046 / 5071
页数:26
相关论文
共 50 条
  • [1] Natural climate variability and teleconnections to precipitation over the Pacific-North American region in CMIP3 and CMIP5 models
    Polade, Suraj D.
    Gershunov, Alexander
    Cayan, Daniel R.
    Dettinger, Michael D.
    Pierce, David W.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (10) : 2296 - 2301
  • [2] Tropical Indo-Pacific Teleconnections to Southern Ocean Mixed Layer Variability
    Li, Qian
    England, Matthew H.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (15)
  • [3] Austral Summer Teleconnections of Indo-Pacific Variability: Their Nonlinearity and Impacts on Australian Climate
    Cai, Wenju
    van Rensch, Peter
    [J]. JOURNAL OF CLIMATE, 2013, 26 (09) : 2796 - 2810
  • [4] The Indo-Pacific climate dynamics and teleconnections with a special emphasis on the Indian summer monsoon rainfall
    Behera, Swadhin
    [J]. MAUSAM, 2019, 70 (01): : 87 - 110
  • [5] The Role of the Sahara Low in Summertime Sahel Rainfall Variability and Change in the CMIP3 Models
    Biasutti, M.
    Sobel, A. H.
    Camargo, Suzana J.
    [J]. JOURNAL OF CLIMATE, 2009, 22 (21) : 5755 - 5771
  • [6] The sea level variability and its projections over the Indo-Pacific Ocean in CMIP5 models
    Deepa, J. S.
    Gnanaseelan, C.
    Parekh, Anant
    [J]. CLIMATE DYNAMICS, 2021, 57 (1-2) : 173 - 193
  • [7] Methods of assessing the performance of IPCC-AR4 models in simulating Australian rainfall teleconnections with Indo-Pacific climate drivers
    Cai, W.
    Sullivan, A.
    Cowan, T.
    [J]. 18TH WORLD IMACS CONGRESS AND MODSIM09 INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: INTERFACING MODELLING AND SIMULATION WITH MATHEMATICAL AND COMPUTATIONAL SCIENCES, 2009, : 2547 - 2553
  • [9] The WCRP CMIP3 multimodel dataset - A new era in climate change research
    Meehl, Gerald A.
    Covey, Curt
    Delworth, Thomas
    Latif, Mojib
    McAvaney, Bryant
    Mitchell, John F. B.
    Stouffer, Ronald J.
    Taylor, Karl E.
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2007, 88 (09) : 1383 - 1394
  • [10] Evaluation of the interdecadal variability of sea surface temperature and sea level in the Pacific in CMIP3 and CMIP5 models
    Lyu, Kewei
    Zhang, Xuebin
    Church, John A.
    Hu, Jianyu
    [J]. INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2016, 36 (11) : 3723 - 3740