Bounds on graph eigenvalues I

被引:25
|
作者
Nikiforov, Vladimir [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
spectral radius; domination number; girth; Laplacian;
D O I
10.1016/j.laa.2006.08.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We improve some recent results on graph eigenvalues. In particular, we prove that if G is a graph of order n >= 2, maximum degree d, and girth at least 5, then mu(G) <= min {Delta, root n-1}, where mu(G) is the largest eigenvalue of the adjacency matrix of G. Also, if G is a graph of order n >= 2 with dominating number gamma(G) = gamma, then lambda 2(G) <= {(n if gamma =1,)(n - gamma if gamma >= 2,) lambda(n)(G) >= [n/gamma], where 0 = lambda(1) (G) <= lambda(2)(G) <= ... <= lambda(n) (G) are the eigenvalues of the Laplacian of G. We also determine all cases of equality in the above inequalities. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:667 / 671
页数:5
相关论文
共 50 条
  • [21] Bounds for Degree-Sum adjacency eigenvalues of a graph in terms of Zagreb indices
    Shinde, Sumedha S.
    Swamy, Narayan
    Gudimani, Shaila B.
    Ramane, H. S.
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2021, 29 (02) : 271 - 283
  • [22] The Eigenvalues and Laplacian Eigenvalues of A Graph
    Wang, Haitang
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2, 2009, : 337 - 341
  • [23] BOUNDS OF EIGENVALUES OF GRAPHS
    HONG, Y
    DISCRETE MATHEMATICS, 1993, 123 (1-3) : 65 - 74
  • [24] COMPLEMENTARY BOUNDS FOR EIGENVALUES
    KREITH, K
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1969, 46 (02): : 164 - &
  • [25] BOUNDS FOR THE EIGENVALUES OF MATRICES
    Zou, Limin
    Jiang, Youyi
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (32): : 519 - 524
  • [26] LOWER BOUNDS FOR EIGENVALUES
    DUFFIN, RJ
    PHYSICAL REVIEW, 1947, 71 (11): : 827 - 828
  • [27] BOUNDS FOR STEKLOFF EIGENVALUES
    KUTTLER, JR
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (01) : 121 - 125
  • [28] LOWER BOUNDS FOR EIGENVALUES
    BAZLEY, NW
    JOURNAL OF MATHEMATICS AND MECHANICS, 1961, 10 (02): : 289 - 307
  • [29] Bounds for the eigenvalues of matrices
    Zou, Limin
    Jiang, Youyi
    Italian Journal of Pure and Applied Mathematics, 2014, 32 : 519 - 524
  • [30] Bounds for the Steklov eigenvalues
    Sheela Verma
    Archiv der Mathematik, 2018, 111 : 657 - 668