Photoelectrochemical analysis of band gap modulated TiO2 for photocatalytic water splitting

被引:6
|
作者
Saraf, Shashank [1 ]
Giraldo, Manuel [1 ]
Paudel, Hari P. [2 ,3 ,4 ,5 ]
Sakthivel, Tamil S. [1 ]
Shepard, Cathrine [2 ]
Gupta, Ankur [1 ]
Leuenberger, Michael N. [2 ,3 ]
Seal, Sudipta [1 ,2 ]
机构
[1] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Mat Sci & Engn, Orlando, FL 32826 USA
[2] Univ Cent Florida, NanoSci Technol & Ctr, Orlando, FL 32826 USA
[3] Univ Cent Florida, Dept Phys, Orlando, FL 32826 USA
[4] Georgia State Univ, Ctr Nanoopt, Atlanta, GA 30302 USA
[5] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30302 USA
基金
美国国家科学基金会;
关键词
Folic acid; Electron hole pair; Photoelectrode; Density functional theory; OXYGEN VACANCIES; HYDROGEN; FILMS;
D O I
10.1016/j.ijhydene.2017.01.232
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study the photocatalysis efficiency of titania (TiO2) is increased by conjugating it with folic acid (FA) molecules through a silane linker (APTMS) layer. Electrochemical testing demonstrated higher negative open circuit potential (OCP) in surface engineered TiO2 as compared to TiO2 indicating higher Schottky barrier leading to suppressed electron-hole pair recombination. The photocurrent density under no bias conditions demonstrated 55% increase in modified titania due to lower band gap and suppressed electron hole pair recombination. The mechanism behind higher photocatalytic properties of surface engineered TiO2 was derived using density functional theory (DFT). (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:9938 / 9944
页数:7
相关论文
共 50 条
  • [41] Nb doped TiO2 nanotubes for enhanced photoelectrochemical water-splitting
    Das, Chittaranjan
    Roy, Poulomi
    Yang, Min
    Jha, Himendra
    Schmuki, Patrik
    NANOSCALE, 2011, 3 (08) : 3094 - 3096
  • [42] Solid-state photoelectrochemical cell with TiO2 nanotubes for water splitting
    Kaiqi Xu
    Athanasios Chatzitakis
    Truls Norby
    Photochemical & Photobiological Sciences, 2017, 16 : 10 - 16
  • [43] Transparent TiO2 nanotubes supporting silver sulfide for photoelectrochemical water splitting
    Lipinska, Wiktoria
    Wolff, Stefania
    Dehm, Katharina E.
    Hager, Simon P.
    Gumieniak, Justyna
    Kramek, Agnieszka
    Crisp, Ryan W.
    Coy, Emerson
    Grochowska, Katarzyna
    Siuzdak, Katarzyna
    NANOSCALE, 2024, 16 (32) : 15265 - 15279
  • [44] Optimization of photoelectrochemical water splitting performance on hierarchical TiO2 nanotube arrays
    Zhang, Zhonghai
    Wang, Peng
    ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (04) : 6506 - 6512
  • [45] Formation Mechanism of TiO2 Nanotubes and Their Applications in Photoelectrochemical Water Splitting and Supercapacitors
    Chen, Bo
    Hou, Junbo
    Lu, Kathy
    LANGMUIR, 2013, 29 (19) : 5911 - 5919
  • [46] Solid-state photoelectrochemical cell with TiO2 nanotubes for water splitting
    Xu, Kaiqi
    Chatzitakis, Athanasios
    Norby, Truls
    PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2017, 16 (01) : 10 - 16
  • [47] High sub-band gap response of TiO2 nanorod arrays for visible photoelectrochemical water oxidation
    Liu, Baoshun
    Yang, Jingjing
    Wang, Jiangyan
    Zhao, Xiujian
    Nakata, Kazuya
    APPLIED SURFACE SCIENCE, 2019, 465 : 192 - 200
  • [48] TiO2/SnO2 nanotubes for hydrogen generation by photoelectrochemical water splitting
    Radecka, M.
    Wnuk, A.
    Trenczek-Zajac, A.
    Schneider, K.
    Zakrzewska, K.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (01) : 841 - 851
  • [49] PtSe2/TiO2 nanotubes heterostructure for enhanced photoelectrochemical water splitting
    Singh, Bheem
    Behera, Govinda Chandra
    Pradhan, Bipul Kumar
    Gautam, Sudhanshu
    Aggarwal, Vishnu
    Kumar, Rahul
    Kumar, M. Senthil
    Ganesan, Ramakrishnan
    Roy, Somnath C.
    Kushvaha, Sunil Singh
    JOURNAL OF MATERIALS SCIENCE, 2024, 59 (32) : 15201 - 15220
  • [50] TiO2 and Fe2O3 Films for Photoelectrochemical Water Splitting
    Krysa, Josef
    Zlamal, Martin
    Kment, Stepan
    Brunclikova, Michaela
    Hubicka, Zdenek
    MOLECULES, 2015, 20 (01) : 1046 - 1058