Languages Recognized with Unbounded Error by Quantum Finite Automata

被引:0
|
作者
Yakaryilmaz, Abuzer [1 ]
Say, A. C. Cem [1 ]
机构
[1] Bogazici Univ, Dept Comp Engn, TR-34342 Istanbul, Turkey
关键词
COMPLEXITY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove the following facts about the language recognition power of Kondacs-Watrous quantum finite automata in the unbounded error setting: One-way automata of this kind recognize all and only the stochastic languages. When the tape head is allowed two-way (or even "1.5-way") movement, more languages become recognizable. This leads to the conclusion that, quantum Turing machines are more powerful than probabilistic Turing, machines when restricted to constant space bounds.
引用
收藏
页码:356 / 367
页数:12
相关论文
共 50 条
  • [31] 2 ω-finite automata and sets of obstructions of their languages
    B. F. Melnikov
    Korean Journal of Computational & Applied Mathematics, 1999, 6 (3) : 565 - 574
  • [32] State Complexity of Projection on Languages Recognized by Permutation Automata and Commuting Letters
    Hoffmann, Stefan
    DEVELOPMENTS IN LANGUAGE THEORY, DLT 2021, 2021, 12811 : 192 - 203
  • [33] ON ERROR CORRECTING CAPACITY OF FINITE AUTOMATA
    HARRISON, MA
    INFORMATION AND CONTROL, 1965, 8 (04): : 430 - &
  • [34] Postselection Finite Quantum Automata
    Scegulnaja-Dubrovska, Oksana
    Lace, Lelde
    Freivalds, Rusins
    UNCONVENTIONAL COMPUTATION, PROCEEDINGS, 2010, 6079 : 115 - 126
  • [35] Quantum finite automata and logics
    Dzelme, I
    SOFSEM 2006: THEORY AND PRACTICE OF COMPUTER SCIENCE, PROCEEDINGS, 2006, 3831 : 246 - 253
  • [36] Simulations of Quantum Finite Automata
    Lippa, Gustaw
    Makiela, Krzysztof
    Kuta, Marcin
    COMPUTATIONAL SCIENCE - ICCS 2020, PT VI, 2020, 12142 : 441 - 450
  • [37] On injectivity of quantum finite automata
    Bell, Paul C.
    Hirvensalo, Mika
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2021, 122 : 19 - 33
  • [38] Undecidability on quantum finite automata
    Amano, Masami
    Iwama, Kazuo
    Conference Proceedings of the Annual ACM Symposium on Theory of Computing, 1999, : 368 - 375
  • [39] Quantum finite multitape automata
    Ambainis, A
    Bonner, R
    Freivalds, R
    Golovkins, M
    Karpinski, M
    SOFSEM'99: THEORY AND PRACTICE OF INFORMATICS, 1999, 1725 : 340 - 348
  • [40] Dense quantum coding and quantum finite automata
    Ambainis, A
    Nayak, A
    Ta-Shma, A
    Vazirani, U
    JOURNAL OF THE ACM, 2002, 49 (04) : 496 - 511