Obtaining glasses in the extremely crystallizing Ge-Sb-Te phase change material

被引:7
|
作者
Piarristeguy, A. [1 ]
Micoulaut, M. [2 ]
Escalier, R. [1 ]
Silly, G. [1 ]
Coulet, M. -V. [3 ]
Pradel, A. [1 ]
机构
[1] Univ Montpellier, CNRS, ENSCM, ICGM, Montpellier, France
[2] Sorbonne Univ, CNRS, Lab Phys Theor Matiere Condensee, UMR 7600, 4 Pl Jussieu, F-75252 Paris 05, France
[3] Aix Marseille Univ, CNRS, MADIREL, UMR 7246, Campus St Jerome, F-13397 Marseille 20, France
关键词
BROKEN CHEMICAL ORDER; NONCRYSTALLINE SOLIDS; THIN-FILMS; TRANSITION; GE2SB2TE5; RIGIDITY; SYSTEM; MEMORY; TEMPERATURES; NUCLEATION;
D O I
10.1016/j.jnoncrysol.2021.120730
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Using thermal co-evaporation techniques, we show that various glassy compositions can be obtained along the GexSbxTe100-2x join in the ternary Ge-Sb-Te system which is known to display dramatic crystallization tendencies. Earlier attempts to produce bulk glasses have been limited to Sb-poor compositions close to the eutectic GeTe6. Results indicate a weak variation of T-g with composition x and also a thermal stability that is weak for most systems, and especially for compositions close to the domain where Ge2Sb2Te5 can be formed. Our results are put in perspective with other network-forming chalcogenides and the T-g variation suggests the preferential formation of Te-Sb-Te, at variance with isochemical compounds such as Ge-Sb-Se. Data are discussed within the framework of topological based approaches which not only indicate that optimal glass formation is achieved for compositions satisfying the Maxwell stability criterion but also predict a flexible to rigid transition at x = 8.5%. Most of our glasses could be formed around this composition.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Phase change behaviors of Sn-doped Ge-Sb-Te material
    Song, W. D.
    Shi, L. P.
    Miao, X. S.
    Chong, T. C.
    [J]. APPLIED PHYSICS LETTERS, 2007, 90 (09)
  • [2] Performance improvement of Ge-Sb-Te material by GaSb doping for phase change memory
    Lu, Yegang
    Zhang, Zhonghua
    Song, Sannian
    Shen, Xiang
    Wang, Guoxiang
    Cheng, Limin
    Dai, Shixun
    Song, Zhitang
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (24)
  • [3] Photonic Ge-Sb-Te phase change metamaterials and their applications
    Cao, Tun
    Wang, Rongzi
    Simpson, Robert E.
    Li, Guixin
    [J]. PROGRESS IN QUANTUM ELECTRONICS, 2020, 74
  • [4] Antimony bonding in Ge-Sb-Te phase change materials
    Bobela, David C.
    Taylor, P. Craig
    Kuhns, Phillip
    Reyes, Arneil
    Edwards, Arthur
    [J]. PHYSICAL REVIEW B, 2011, 83 (03):
  • [5] Epitaxial films for Ge-Sb-Te phase change memory
    Shayduk, R.
    Braun, W.
    [J]. JOURNAL OF CRYSTAL GROWTH, 2009, 311 (07) : 2215 - 2219
  • [6] Revealing change in Ge-Sb-Te alloys
    Wood, Jonathan
    [J]. MATERIALS TODAY, 2008, 11 (05) : 15 - 15
  • [7] Crystal structure assessment of Ge-Sb-Te phase change nanowires
    Rotunno, Enzo
    Lazzarini, Laura
    Longo, Massimo
    Grillo, Vincenzo
    [J]. NANOSCALE, 2013, 5 (04) : 1557 - 1563
  • [8] CHARACTERZATION OF Ge-Sb-Te PHASE-CHANGE MEMORY MATERIALS
    Iovu, Mihail
    Colomeico, Eduard
    Benea, Vasile
    Harea, Diana
    [J]. ADVANCED TOPICS IN OPTOELECTRONICS, MICROELECTRONICS, AND NANOTECHNOLOGIES VI, 2012, 8411
  • [9] Epitaxy of Ge-Sb-Te phase-change memory alloys
    Braun, Wolfgang
    Shayduk, Roman
    Flissikowski, Timur
    Ramsteiner, Manfred
    Grahn, Holger T.
    Riechert, Henning
    Fons, Paul
    Kolobov, Alex
    [J]. APPLIED PHYSICS LETTERS, 2009, 94 (04)
  • [10] Comparison of thermal stabilities between Ge-Sb-Te and In-Sb-Te phase change materials
    Kim, Yong Tae
    Kim, Seong-Il
    [J]. APPLIED PHYSICS LETTERS, 2013, 103 (12)