Approximation of continuous random variables for the evaluation of the reliability parameter of complex stress-strength models

被引:5
|
作者
Barbiero, Alessandro [1 ]
Hitaj, Asmerilda [2 ]
机构
[1] Univ Milan, Dept Econ Management & Quantitat Methods, Via Conservatorio 7, I-20122 Milan, Italy
[2] Univ Insubria, Dept Econ, Via Monte Generoso 71, I-21100 Varese, Italy
关键词
Approximation; Cumulative distribution function; Discretization; Moment equalization; Monte Carlo simulation; DISCRETE APPROXIMATIONS; OPTIMAL DISCRETIZATION; DISTRIBUTIONS;
D O I
10.1007/s10479-021-04010-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In many management science or economic applications, it is common to represent the key uncertain inputs as continuous random variables. However, when analytic techniques fail to provide a closed-form solution to a problem or when one needs to reduce the computational load, it is often necessary to resort to some problem-specific approximation technique or approximate each given continuous probability distribution by a discrete distribution. Many discretization methods have been proposed so far; in this work, we revise the most popular techniques, highlighting their strengths and weaknesses, and empirically investigate their performance through a comparative study applied to a well-known engineering problem, formulated as a stress-strength model, with the aim of weighting up their feasibility and accuracy in recovering the value of the reliability parameter, also with reference to the number of discrete points. The results overall reward a recently introduced method as the best performer, which derives the discrete approximation as the numerical solution of a constrained non-linear optimization, preserving the first two moments of the original distribution. This method provides more accurate results than an ad-hoc first-order approximation technique. However, it is the most computationally demanding as well and the computation time can get even larger than that required by Monte Carlo approximation if the number of discrete points exceeds a certain threshold.
引用
收藏
页码:1594 / 1598
页数:5
相关论文
共 50 条