A modification of convex approximation methods for structural optimization

被引:30
|
作者
Zhang, WH
Fleury, C
机构
[1] Aerospace Laboratory, LTAS, University of Liège
关键词
D O I
10.1016/S0045-7949(96)00147-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The most popular convex approximation methods used today in structural optimization are discussed in this paper: the convex linearization method (CONLIN), the method of the moving asymptotes (MMA) and the sequential quadratic programming method (SQP). Modifications are made to enhance the reliability of the CONLIN method. In addition, a generalized MMA (GMMA) is established. However, in view of practical difficulties of evaluating second-order derivatives, a fitting scheme is proposed in this work to adjust the convexity of the approximation based on the available function value at the preceding design iteration. Numerical results show that this simple scheme is efficient in our applications. (C) 1997 Civil-Comp Ltd and Elsevier Science Ltd.
引用
收藏
页码:89 / 95
页数:7
相关论文
共 50 条
  • [41] A Polyhedral Approximation Framework for Convex and Robust Distributed Optimization
    Buerger, Mathias
    Notarstefano, Giuseppe
    Allgoewer, Frank
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (02) : 384 - 395
  • [42] Polyhedral approximation in mixed-integer convex optimization
    Lubin, Miles
    Yamangil, Emre
    Bent, Russell
    Vielma, Juan Pablo
    MATHEMATICAL PROGRAMMING, 2018, 172 (1-2) : 139 - 168
  • [43] Outer approximation algorithms for convex vector optimization problems
    Keskin, Irem Nur
    Ulus, Firdevs
    OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (04): : 723 - 755
  • [44] A Convex Approximation of the Relaxed Binaural Beamforming Optimization Problem
    Koutrouvelis, Andreas, I
    Hendriks, Richard C.
    Heusdens, Richard
    Jensen, Jesper
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2019, 27 (02) : 321 - 331
  • [45] ADDITIVE SCHWARZ METHODS FOR CONVEX OPTIMIZATION AS GRADIENT METHODS
    Park, Jongho
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (03) : 1495 - 1530
  • [46] Optimal Tensor Methods in Smooth Convex and Uniformly Convex Optimization
    Gasnikov, Alexander
    Dvurechensky, Pavel
    Gorbunov, Eduard
    Vorontsova, Evgeniya
    Selikhanovych, Daniil
    Uribe, Cesar A.
    CONFERENCE ON LEARNING THEORY, VOL 99, 2019, 99
  • [47] Polyhedral approximation of convex compact bodies by filling methods
    Kamenev, G. K.
    Pospelov, A. I.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2012, 52 (05) : 680 - 690
  • [48] Numerical instabilities and convergence control for convex approximation methods
    Dixiong Yang
    Pixin Yang
    Nonlinear Dynamics, 2010, 61 : 605 - 622
  • [49] Approximation Methods Preserving Cones of Generalized Convex Functions
    Boitsov, D. I.
    Sidorov, S. P.
    WORLD CONGRESS ON ENGINEERING, WCE 2015, VOL I, 2015, : 46 - 50
  • [50] Numerical instabilities and convergence control for convex approximation methods
    Yang, Dixiong
    Yang, Pixin
    NONLINEAR DYNAMICS, 2010, 61 (04) : 605 - 622