Darboux transformation and soliton solutions of the semi-discrete massive Thirring model

被引:23
|
作者
Xu, Tao [1 ,2 ]
Pelinovsky, Dmitry E. [3 ,4 ]
机构
[1] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
[2] China Univ Petr, Coll Sci, Beijing 102249, Peoples R China
[3] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[4] Nizhnii Novgorod State Tech Univ, Dept Appl Math, 24 Minin St, Nizhnii Novgorod 603950, Russia
基金
中国国家自然科学基金;
关键词
Massive Thirring model; Integrable semi-discretization; Darboux transformation; Solitons; INTEGRABLE RELATIVISTIC-EQUATIONS; ORBITAL STABILITY; UNIFIED APPROACH;
D O I
10.1016/j.physleta.2019.125948
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A one-fold Darboux transformation between solutions of the semi-discrete massive Thirring model is derived using the Lax pair and the dressing method. This transformation is used to find the exact expressions for soliton solutions on zero and nonzero backgrounds. It is shown that the discrete solitons have the same properties as their continuous counterparts. (C) 2019 Elsevier B.V. All rights reserved.
引用
下载
收藏
页数:14
相关论文
共 50 条