THE FORMAL THEORY OF MULTIMONOIDAL MONADS

被引:0
|
作者
Bohm, Gabriella [1 ]
机构
[1] Wigner Res Ctr Phys, 114,POB 49, H-1525 Budapest, Hungary
来源
关键词
monoidal; 2-category; monoidal double category; pseudomonoid; (op)monoidal monad; Eilenberg-Moore construction; lifting;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Certain aspects of Street's formal theory of monads in 2-categories are extended to multimonoidal monads in symmetric strict monoidal 2-categories. Namely, any symmetric strict monoidal 2-category M admits a symmetric strict monoidal 2-category of pseudomonoids, monoidal 1-cells and monoidal 2-cells in M. Dually, there is a symmetric strict monoidal 2-category of pseudomonoids, opmonoidal 1-cells and opmonoidal 2-cells in M. Extending a construction due to Aguiar and Mahajan for M = Cat, we may apply the first construction p-times and the second one q-times (in any order). It yields a 2-category M-pq. A 0-cell therein is an object A of M together with p + q compatible pseudomonoid structures; it is termed a (p + q)-oidal object in M. A monad in M-pq is called a (p, q)-oidal monad in M; it is a monad t on A in M together with p monoidal, and q opmonoidal structures in a compatible way. If M has monoidal Eilenberg-Moore construction, and certain (Linton type) stable coequalizers exist, then a (p + q)-oidal structure on the Eilenberg-Moore object A(t) of a (p, q)-oidal monad (A, t) is shown to arise via a symmetric strict monoidal double functor to Ehresmann's double category Sqr(M) of squares in M, from the double category of monads in Sqr(M) in the sense of Fiore, Gambino and Kock. While q ones of the pseudomonoid structures of A(t) are lifted along the 'forgetful' 1-cell A(t) -> A, the other p ones are lifted along its left adjoint. In the particular example when M is an appropriate 2-subcategory of Cat, this yields a conceptually different proof of some recent results due to Aguiar, Haim and Lopez Franco.
引用
收藏
页码:295 / 348
页数:54
相关论文
共 50 条
  • [11] The weak theory of monads
    Boehm, Gabriella
    ADVANCES IN MATHEMATICS, 2010, 225 (01) : 1 - 32
  • [12] Sweedler Theory of Monads
    McDermott, Dylan
    Rivas, Exequiel
    Uustalu, Tarmo
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES (FOSSACS 2022), 2022, 13242 : 428 - 448
  • [13] COMMUTATIVE MONADS AS A THEORY OF DISTRIBUTIONS
    Kock, Anders
    THEORY AND APPLICATIONS OF CATEGORIES, 2012, 26 : 97 - 131
  • [14] Monads, strings, and M-theory
    Hofman, C
    Park, JS
    NUCLEAR PHYSICS B, 1998, 520 (1-2) : 229 - 260
  • [15] SUBSTITUTION - A FORMAL METHODS CASE-STUDY USING MONADS AND TRANSFORMATIONS
    BELLEGARDE, F
    HOOK, J
    SCIENCE OF COMPUTER PROGRAMMING, 1994, 23 (2-3) : 287 - 311
  • [16] A THEORY OF MONADS: OUTLINES OF THE PHILOSOPHY OF THE PRINCIPLE OF RELATIVITY
    Burns, C. D.
    INTERNATIONAL JOURNAL OF ETHICS, 1923, 33 (03): : 340 - 340
  • [17] HOMOTOPY THEORY FOR ALGEBRAS OVER POLYNOMIAL MONADS
    Batanin, M. A.
    Berger, C.
    THEORY AND APPLICATIONS OF CATEGORIES, 2017, 32 : 148 - 253
  • [18] SOME APPLICATIONS OF THEORY OF MONADS TO BOOLEAN ALGEBRAS
    LUXEMBUR.WA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A31 - A31
  • [19] INVOLUTIVE MONADS IN ELEMENTARY SET-THEORY
    GUITART, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 277 (19): : 935 - 937
  • [20] Monads at the bottom, monads at the top, monads all over
    Nachtomy, Ohad
    BRITISH JOURNAL FOR THE HISTORY OF PHILOSOPHY, 2018, 26 (01) : 197 - 207