Gravitation and quadratic forms

被引:9
|
作者
Ananth, Sudarshan [1 ]
Brink, Lars [2 ,3 ,4 ]
Majumdar, Sucheta [1 ]
Mali, Mahendra [5 ]
Shah, Nabha [1 ]
机构
[1] Indian Inst Sci Educ & Res, Pune 411008, Maharashtra, India
[2] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[3] Nanyang Technol Univ, Inst Adv Studies, Singapore 637371, Singapore
[4] Nanyang Technol Univ, Dept Phys & Appl Phys, Singapore 637371, Singapore
[5] Indian Inst Sci Educ & Res, Sch Phys, Thiruvananthapuram 695016, Kerala, India
来源
关键词
Classical Theories of Gravity; Gauge Symmetry; Supergravity Models; Superspaces; YANG-MILLS THEORY; TERMS;
D O I
10.1007/JHEP03(2017)169
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The light-cone Hamiltonians describing both pure (N = 0) Yang-Mills and N = 4 super Yang-Mills may be expressed as quadratic forms. Here, we show that this feature extends to theories of gravity. We demonstrate how the Hamiltonians of both pure gravity and N = 8 supergravity, in four dimensions, may be written as quadratic forms. We examine the effect of residual reparametrizations on the Hamiltonian and the resulting quadratic form.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] ABSTRACT QUADRATIC FORMS
    KAPLANSKY, I
    SHAKER, RJ
    CANADIAN JOURNAL OF MATHEMATICS, 1969, 21 (05): : 1218 - +
  • [32] On quadratic differential forms
    Willems, JC
    Trentelman, HL
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (05) : 1703 - 1749
  • [33] On the singularities of quadratic forms
    Pnevmatikos, S
    Pliakis, D
    JOURNAL OF GEOMETRY AND PHYSICS, 2000, 34 (01) : 73 - 95
  • [34] AUTOMORPHS OF QUADRATIC FORMS
    JONES, BW
    MARSH, D
    DUKE MATHEMATICAL JOURNAL, 1954, 21 (01) : 179 - 193
  • [35] Domination of quadratic forms
    Daniel Lenz
    Marcel Schmidt
    Melchior Wirth
    Mathematische Zeitschrift, 2020, 296 : 761 - 786
  • [36] UNITS OF QUADRATIC FORMS
    RAMANATHAN, KG
    ANNALS OF MATHEMATICS, 1952, 56 (01) : 1 - 10
  • [37] Domination of quadratic forms
    Lenz, Daniel
    Schmidt, Marcel
    Wirth, Melchior
    MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (1-2) : 761 - 786
  • [38] Quadratic forms on graphs
    Noga Alon
    Konstantin Makarychev
    Yury Makarychev
    Assaf Naor
    Inventiones mathematicae, 2006, 163 : 499 - 522
  • [39] ON GENERIC QUADRATIC FORMS
    Karpenko, Nikita A.
    PACIFIC JOURNAL OF MATHEMATICS, 2018, 297 (02) : 367 - 380
  • [40] INEQUALITIES IN QUADRATIC FORMS
    LONDON, D
    DUKE MATHEMATICAL JOURNAL, 1966, 33 (03) : 511 - +