Sponge-Like Li4Ti5O12 Constructed on Graphene for High Li Electroactivities

被引:3
|
作者
Bae, Seongjun [1 ,2 ]
Nam, Inho [1 ,2 ]
Park, Soomin [1 ,2 ]
Yoo, Young Geun [1 ,2 ]
Park, Jongseok [1 ,2 ]
Lee, Jong Min [1 ,2 ]
Han, Jeong Woo [3 ]
Yi, Jongheop [1 ,2 ]
机构
[1] World Class Univ, Seoul Natl Univ, Inst Chem Proc, Program Chem Convergence Energy & Environm C2E2, Seoul 151742, South Korea
[2] Seoul Natl Univ, Sch Chem & Biol Engn, Seoul 151742, South Korea
[3] Univ Seoul, Dept Chem Engn, Seoul 130743, South Korea
基金
新加坡国家研究基金会;
关键词
Lithium Ion Battery; Anode; Li4Ti5O12; Graphene; Nanostructure; LITHIUM ION BATTERY; ANODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; OXIDE NANOCOMPOSITE; COMPOSITES; CATHODES;
D O I
10.1166/jnn.2017.12447
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A sponge-like Li4Ti5O12/graphene composite was prepared via sequential hydrothermal process and solid-state heat treatment process for the application to high-power lithium ion batteries. The as-prepared electrode showed outstanding Li electroactivities with a rapid and reversible Li insertion/extraction of up to 10 C-rate (1.75 A/g). It delivered a discharge capacity of 174 mAh/g at 0.5 C, near the theoretical capacity of Li4Ti5O12, with good rate capability and cyclic stability. First-principles calculations revealed the intimate interaction of the Li4Ti5O12 and graphene, which implies that graphene functions as an 'electron tunnel.' Electrochemical impedance spectroscopy also proved that the graphene-hybridization and the unique structure of the Li4Ti5O12 material significantly reduce the resistive behavior of electrodes. The 3D structured Li4Ti5O12/graphene hybrid reported herein could be a promising candidate for a safe, low-cost, high-power anode for lithium ion batteries, and our seeding-growth-sintering method for decorating graphene with active material will offer an effective upgrade on highly insulating Li4Ti5O12 materials.
引用
收藏
页码:588 / 593
页数:6
相关论文
共 50 条
  • [21] Synthesis and ionic conductivity of Li4Ti5O12
    Stenina, I. A.
    Il'in, A. B.
    Yaroslavtsev, A. B.
    INORGANIC MATERIALS, 2015, 51 (01) : 62 - 67
  • [22] Synthesis of Li4Ti5O12 and its exchange kinetics with Li+
    Dong, Dian-Quan
    Zhang, Feng-Bao
    Zhang, Guo-Liang
    Liu, Yi-Fan
    ACTA PHYSICO-CHIMICA SINICA, 2007, 23 (06) : 950 - 954
  • [23] Chemical and electrochemical Li-insertion into the Li4Ti5O12 spinel
    Aldon, L
    Kubiak, P
    Womes, M
    Jumas, JC
    Olivier-Fourcade, J
    Tirado, JL
    Corredor, JI
    Vicente, CP
    CHEMISTRY OF MATERIALS, 2004, 16 (26) : 5721 - 5725
  • [24] In situ neutron diffraction study of Li insertion in Li4Ti5O12
    Colin, Jean-Francois
    Godbole, Vikram
    Novak, Petr
    ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (06) : 804 - 807
  • [25] Synthesis and characterization Li4Ti5O12 for Li-ion batteries
    Yilmaz, Mehmet
    Aydin, Serdar
    Turgut, Guven
    Yurtcan, Mustafa Tolga
    Demir, Yasar
    Ertugrul, Mehmet
    ENERGY EDUCATION SCIENCE AND TECHNOLOGY PART A-ENERGY SCIENCE AND RESEARCH, 2011, 28 (01): : 411 - 416
  • [26] Effective wrapping of graphene on individual Li4Ti5O12 grains for high-rate Li-ion batteries
    Oh, Yuhong
    Nam, Seunghoon
    Wi, Sungun
    Kang, Joonhyeon
    Hwang, Taehyun
    Lee, Sangheon
    Park, Helen Hejin
    Cabana, Jordi
    Kim, Chunjoong
    Park, Byungwoo
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (07) : 2023 - 2027
  • [27] Single-crystalline Li4Ti5O12 nanorods and their application in high rate capability Li4Ti5O12/LiMn2O4 full cells
    Xi, Liu Jiang
    Wang, Hong Kang
    Yang, Shi Liu
    Ma, Ru Guang
    Lu, Zhou Guang
    Cao, Chen Wei
    Leung, Kwan Lan
    Deng, Jian Qiu
    Rogach, Andrey L.
    Chung, C. Y.
    JOURNAL OF POWER SOURCES, 2013, 242 : 222 - 229
  • [28] Spontaneous Li-Ion Transfer from Spinel Li4Ti5O12 Surfaces: Deterioration at Li4Ti5O12/Electrolyte Interfaces Stored at Room Temperature
    Kitta, Mitsunori
    Akita, Tomoki
    Kohyama, Masanori
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (07) : A1272 - A1275
  • [29] Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-Ion Batteries
    Jaiswal, A.
    Horne, C. R.
    Chang, O.
    Zhang, W.
    Kong, W.
    Wang, E.
    Chern, T.
    Doeff, M. M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (12) : A1041 - A1046
  • [30] Enhanced the electrochemical performance of Li4Ti5O12 anode materials by high conductive graphene nanosheets
    Shaojie Li
    Jian Mao
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 15135 - 15141