Aryne cycloaddition reaction as a facile and mild modification method for design of electrode materials for high-performance symmetric supercapacitor

被引:7
|
作者
Sviridova, Elizaveta [1 ]
Li, Min [2 ]
Barras, Alexandre [2 ]
Addad, Ahmed [3 ]
Yusubov, Mekhman S. [1 ]
Zhdankin, Viktor V. [4 ]
Yoshimura, Akira [1 ]
Szunerits, Sabine [2 ]
Postnikov, Pavel S. [1 ,5 ]
Boukherroub, Rabah [2 ]
机构
[1] Tomsk Polytech Univ, Res Sch Chem & Appl Biomed Sci, Tomsk 634050, Russia
[2] Univ Lille, Univ Polytech Hauts de France, CNRS, Cent Lille,IEMN,UMR CNRS 8520, F-59000 Lille, France
[3] Univ Lille, CNRS, UMR UMET 8207, F-59000 Lille, France
[4] Univ Minnesota, Dept Chem & Biochem, Duluth, MN 55812 USA
[5] Univ Chem & Technol, Dept Solid State Engn, Prague 16628, Czech Republic
基金
俄罗斯科学基金会;
关键词
Reduced graphene oxide; Iodonium salts; Aryne cycloaddition reaction; Covalent functionalization; Symmetric supercapacitor; REDUCED GRAPHENE OXIDE; NITROGEN-DOPED GRAPHENE; COVALENT FUNCTIONALIZATION; RAMAN-SPECTROSCOPY; THIN-FILM; NANOSHEETS; EFFICIENT; BENZYNE; NANOCOMPOSITE; CAPACITANCE;
D O I
10.1016/j.electacta.2020.137667
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Covalent modification of graphene-based materials can be considered as one of the most promising methods for tailoring their electrochemical properties and extending their application as electrode materials for supercapacitors. In this contribution, we report a facile and mild approach for the covalent functionalization of reduced graphene oxide (rGO) via aryne cycloaddition using pseudocyclic iodoxoborole as an aryne source. The structure and chemical composition of the functionalized rGO (f-rGO) were assessed by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), ultraviolet-visible (UV-vis) spectrophotometry, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), which revealed the negligible influence of covalent modification on the rGO structure. Transmission electron microscopy (TEM) imaging showed an increase of the interlayer distance from 0.38 to 0.46 nm upon functionalization. The electrochemical performance of f-rGO material was studied by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques in 2 M KOH aqueous solution as the electrolyte. Under optimized conditions, the f-rGO displayed a high specific capacitance of 297 F g(-1) at a current density of 1 A g(-1), which is much higher than that of unmodified rGO (170 F g(-1) at 1 A g(-1)). Therefore, the f-rGO was used to construct a symmetric supercapacitor device, exhibiting an energy density of 6.7 Wh kg(-1) at a power density of 685.8 W kg(-1). The device exhibited good cycling stability and ability to maintain about 96% of the initial capacitance value after 10,000 cycles. Furthermore, two symmetric supercapacitor devices were successfully applied to power a home-designed windmill device for 3 s. The results obtained in the present study highlight the importance of graphene functionalization as an effective route to fabricate rGO-based materials with enhanced properties in energy storage devices. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Reduced graphene oxide/polypyrrole composite: an advanced electrode for high-performance symmetric/asymmetric supercapacitor
    Guijing Liu
    Yanying Shi
    Lei Wang
    Yadong Song
    Shanmin Gao
    Dong Liu
    Leqing Fan
    Carbon Letters, 2020, 30 : 389 - 397
  • [32] Reduced graphene oxide/polypyrrole composite: an advanced electrode for high-performance symmetric/asymmetric supercapacitor
    Liu, Guijing
    Shi, Yanying
    Wang, Lei
    Song, Yadong
    Gao, Shanmin
    Liu, Dong
    Fan, Leqing
    CARBON LETTERS, 2020, 30 (04) : 389 - 397
  • [33] Easily-prepared bimetallic metal phosphides as high-performance electrode materials for asymmetric supercapacitor and hydrogen evolution reaction
    Gou, Jianxia
    Du, Yunmei
    Xie, Shengli
    Liu, Yanru
    Kong, Xiangjin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (50) : 27214 - 27223
  • [34] Mixed Ni-Co selenides as advanced electrode materials for high-performance supercapacitor
    Xie, Shengli
    Gou, Jianxia
    Zhu, Yanfeng
    Li, Yaping
    IONICS, 2023, 29 (08) : 3365 - 3371
  • [35] Silver wrapped MoS2 hybrid electrode materials for high-performance supercapacitor
    Wu, Zhuangzhi
    Xie, Lu
    Xiao, Yuanyuan
    Wang, Dezhi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 708 : 763 - 768
  • [36] Two-dimensional siloxene nanosheets: novel high-performance supercapacitor electrode materials
    Krishnamoorthy, Karthikeyan
    Pazhamalai, Parthiban
    Kim, Sang-Jae
    ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (06) : 1595 - 1602
  • [37] High-Performance Supercapacitor Electrode Materials from Cellulose-Derived Carbon Nanofibers
    Cai, Jie
    Niu, Haitao
    Li, Zhenyu
    Du, Yong
    Cizek, Pavel
    Xie, Zongli
    Xiong, Hanguo
    Lin, Tong
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (27) : 14946 - 14953
  • [38] NiMoO4@NiSe2 microspheres as electrode materials for high-performance supercapacitor
    Huai, Xinyu
    Wang, Dengke
    Wu, Xiang
    Liu, Jinghai
    Materials Research Bulletin, 2025, 181
  • [39] Scalable Strategy for High-Performance Hybrid Supercapacitor and Battery-Type Electrode Materials
    Qian, Guangdong
    Qi, Yao
    Zhang, Meng
    Lv, Han
    Li, Xinbo
    Liu, Rui
    Zhu, Huiling
    ADVANCED ENGINEERING MATERIALS, 2023,
  • [40] Mixed Ni-Co selenides as advanced electrode materials for high-performance supercapacitor
    Shengli Xie
    Jianxia Gou
    Yanfeng Zhu
    Yaping Li
    Ionics, 2023, 29 : 3365 - 3371