Structure-Preserving Numerical Methods for Stochastic Poisson Systems

被引:5
|
作者
Hong, Jialin [1 ]
Ruan, Jialin [2 ]
Sun, Liying [1 ]
Wang, Lijin [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, 19 YuQuan Rd, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic Poisson systems; Poisson structure; Casimir functions; Poisson integrators; symplectic integrators; generating functions; stochastic rigid body system; HAMILTONIAN-SYSTEMS; SYMPLECTIC SCHEMES; INTEGRATORS; EQUATION;
D O I
10.4208/cicp.OA-2019-0084
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a numerical integration methodology for stochastic Poisson systems (SPSs) of arbitrary dimensions and multiple noises with different Hamiltonians in diffusion coefficients, which can provide numerical schemes preserving both the Poisson structure and the Casimir functions of the SPSs, based on the Darboux-Lie theorem. We first transform the SPSs to their canonical form, the generalized stochastic Hamiltonian systems (SHSs), via canonical coordinate transformations found by solving certain PDEs defined by the Poisson brackets of the SPSs. An alpha-generating function approach with alpha is an element of [0,1] is then constructed and used to create symplectic schemes for the SHSs, which are then transformed back by the inverse coordinate transformation to become stochastic Poisson integrators of the original SPSs. Numerical tests on a three-dimensional stochastic rigid body system illustrate the efficiency of the proposed methods.
引用
收藏
页码:802 / 830
页数:29
相关论文
共 50 条
  • [21] A STRUCTURE-PRESERVING NUMERICAL DISCRETIZATION OF REVERSIBLE DIFFUSIONS
    Latorre, Juan C.
    Metzner, Philipp
    Hartmann, Carsten
    Schuette, Christof
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2011, 9 (04) : 1051 - 1072
  • [22] Structure-Preserving Numerical Schemes for Lindblad Equations
    Yu Cao
    Jianfeng Lu
    Journal of Scientific Computing, 2025, 102 (1)
  • [23] An explicit structure-preserving numerical scheme for EPDiff
    Azencot, Omri
    Vantzos, Orestis
    Ben-Chen, Mirela
    COMPUTER GRAPHICS FORUM, 2018, 37 (05) : 107 - 119
  • [24] Meshless structure-preserving GRBF collocation methods for stochastic Maxwell equations with multiplicative noise
    Hou, Baohui
    APPLIED NUMERICAL MATHEMATICS, 2023, 192 : 337 - 355
  • [25] Structure-preserving Runge-Kutta methods for stochastic Hamiltonian equations with additive noise
    Pamela M. Burrage
    Kevin Burrage
    Numerical Algorithms, 2014, 65 : 519 - 532
  • [26] Structure-preserving Runge-Kutta methods for stochastic Hamiltonian equations with additive noise
    Burrage, Pamela M.
    Burrage, Kevin
    NUMERICAL ALGORITHMS, 2014, 65 (03) : 519 - 532
  • [27] Structure-preserving sparsification methods for social networks
    Hamann, Michael
    Lindner, Gerd
    Meyerhenke, Henning
    Staudt, Christian L.
    Wagner, Dorothea
    SOCIAL NETWORK ANALYSIS AND MINING, 2016, 6 (01)
  • [28] High-Order Energy-Preserving Methods for Stochastic Poisson Systems
    Li, Xiuyan
    Ma, Qiang
    Ding, Xiaohua
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2019, 9 (03) : 465 - 484
  • [29] Structure-preserving interpolation of bilinear control systems
    Peter Benner
    Serkan Gugercin
    Steffen W. R. Werner
    Advances in Computational Mathematics, 2021, 47
  • [30] Structure-preserving model reduction for mechanical systems
    Lall, S
    Krysl, P
    Marsden, JE
    PHYSICA D-NONLINEAR PHENOMENA, 2003, 184 (1-4) : 304 - 318