Reverse-Engineering Strain in Nanocrystallites by Tracking Trimerons

被引:3
|
作者
Nickel, Rachel [1 ]
Chi, C. -C. [2 ]
Ranjan, Ashok [2 ]
Ouyang, Chuenhou [2 ]
Freeland, John W. [3 ]
van Lierop, Johan [1 ,4 ]
机构
[1] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada
[2] Natl Tsing Hua Univ, Mat Sci & Engn, Hsinchu, Taiwan
[3] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
[4] Univ Manitoba, Manitoba Inst Mat, Winnipeg, MB R3T 2N2, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
nanoparticles; strain; trimerons; Verwey transition;
D O I
10.1002/adma.202007413
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Although strain underpins the behavior of many transition-oxide-based magnetic nanomaterials, it is elusive to quantify. Since the formation of orbital molecules is sensitive to strain, a metal-insulator transition should be a window into nanocrystallite strain. Using three sizes of differently strained Fe3O4 polycrystalline nanorods, the impact of strain on the Verwey transition and the associated formation and dissolution processes of quasiparticle trimerons is tracked. In 40 and 50 nm long nanorods, increasing isotropic strain results in Verwey transitions going from T-V approximate to 60 K to 20 K. By contrast, 700 nm long nanorods with uniaxial strain along the (110) direction have T-V approximate to 150 K-the highest value reported thus far. A metal-insulator transition, like T-V in Fe3O4, can be used to determine the effective strain within nanocrystallites, thus providing new insights into nanoparticle properties and nanomagnetism.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [21] Reverse-engineering of XML Schemas: A Survey
    Klimek, Jakub
    Necasky, Martin
    PROCEEDINGS OF THE DATESO 2010 WORKSHOP - DATESO DATABASES, TEXTS, SPECIFICATIONS, AND OBJECTS, 2010, 567 : 96 - 107
  • [22] INTERPRETING REVERSE-ENGINEERING LAW - RESPONSE
    SAMUELSON, P
    IEEE SOFTWARE, 1990, 7 (04) : 8 - &
  • [23] Rethinking the Reverse-engineering of Trojan Triggers
    Wang, Zhenting
    Mei, Kai
    Ding, Hailun
    Zhai, Juan
    Ma, Shiqing
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [24] Survey on Reverse-engineering Artificial Intelligence
    Li C.-S.
    Wang S.-Y.
    Li Y.-M.
    Zhang C.-Z.
    Yuan Y.
    Wang G.-R.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (02): : 712 - 732
  • [25] Reverse-engineering the locomotion of a stem amniote
    Nyakatura, John A.
    Melo, Kamilo
    Horvat, Tomislav
    Karakasiliotis, Kostas
    Allen, Vivian R.
    Andikfar, Amir
    Andrada, Emanuel
    Arnold, Patrick
    Laustroeer, Jonas
    Hutchinson, John R.
    Fischer, Martin S.
    Ijspeert, Auke J.
    NATURE, 2019, 565 (7739) : 351 - +
  • [26] Reverse-engineering ecological then from data
    Martin, Benjamin T.
    Munch, Stephan B.
    Hein, Andrew M.
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2018, 285 (1878)
  • [27] Reverse-engineering transcription control networks
    Gardner, Timothy S.
    Faith, Jeremiah J.
    PHYSICS OF LIFE REVIEWS, 2005, 2 (01) : 65 - 88
  • [28] Reverse-engineering the locomotion of a stem amniote
    John A. Nyakatura
    Kamilo Melo
    Tomislav Horvat
    Kostas Karakasiliotis
    Vivian R. Allen
    Amir Andikfar
    Emanuel Andrada
    Patrick Arnold
    Jonas Lauströer
    John R. Hutchinson
    Martin S. Fischer
    Auke J. Ijspeert
    Nature, 2019, 565 : 351 - 355
  • [29] Reverse-engineering human regulatory networks
    Lefebvre, Celine
    Rieckhof, Gabrielle
    Califano, Andrea
    WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE, 2012, 4 (04) : 311 - 325
  • [30] Reverse-Engineering EFSMs with Data Dependencies
    Foster, Michael
    Derrick, John
    Walkinshaw, Neil
    TESTING SOFTWARE AND SYSTEMS, ICTSS 2021, 2022, 13045 : 37 - 54