Three-dimensional spin-3 theories based on general kinematical algebras

被引:39
|
作者
Bergshoeff, Eric [1 ]
Grumiller, Daniel [2 ]
Prohazka, Stefan [2 ]
Rosseel, Jan [3 ,4 ]
机构
[1] Univ Groningen, Van Swinderen Inst Particle Phys & Grav, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
[2] TU Wien, Inst Theoret Phys, Wiedner Hauptstr 8-10-136, A-1040 Vienna, Austria
[3] Univ Bern, Albert Einstein Ctr Fundamental Phys, Sidlerstr 5, CH-3012 Bern, Switzerland
[4] Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria
来源
基金
瑞士国家科学基金会; 奥地利科学基金会;
关键词
Higher Spin Gravity; Higher Spin Symmetry; Chern-Simons Theories; Space-Time Symmetries; ASYMPTOTIC SYMMETRIES;
D O I
10.1007/JHEP01(2017)114
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We initiate the study of non- and ultra-relativistic higher spin theories. For sake of simplicity we focus on the spin-3 case in three dimensions. We classify all kinematical algebras that can be obtained by all possible Inonti-Wigner contraction procedures of the kinematical algebra of spin-3 theory in three dimensional (anti-) de Sitter space-time. We demonstrate how to construct associated actions of Chern-Simons type, directly in the ultra-relativistic case and by suitable algebraic extensions in the non-relativistic case. We show how to give these kinematical algebras an infinite-dimensional lift by imposing suitable boundary conditions in a theory we call "Carroll Gravity", whose asymptotic symmetry algebra turns out to be an infinite-dimensional extension of the Carroll algebra.
引用
收藏
页数:49
相关论文
共 50 条
  • [21] Surface phase transitions of the three-dimensional semi-infinite spin-3/2 Blume-Emery-Griffiths model
    Bakchich, A
    El Bouziani, M
    [J]. PHYSICAL REVIEW B, 2000, 62 (05) : 3389 - 3408
  • [22] Classification of three-dimensional evolution algebras
    Cabrera Casado, Yolanda
    Siles Molina, Mercedes
    Victoria Velasco, M.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 524 : 68 - 108
  • [23] CLASSIFICATION OF THREE-DIMENSIONAL ZEROPOTENT ALGEBRAS
    Cedilnik, Anton
    Jerman, Marjan
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2020, 27 : 127 - 146
  • [24] THREE-DIMENSIONAL l-ALGEBRAS
    Lavric, Boris
    Jerman, Marjan
    [J]. COMMUNICATIONS IN ALGEBRA, 2009, 37 (02) : 684 - 711
  • [25] CLASSIFICATION OF THREE-DIMENSIONAL ISOPOTENT ALGEBRAS
    Cedilnik, Anton
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2023, 33 : 226 - 246
  • [26] The two- and three-dimensional spin-3/2 random Blume-Capel model by the position space renormalization group
    El Bouziani, Mohammed
    Gaye, Abou
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (11) : 2643 - 2651
  • [27] Harmonic superspaces for three-dimensional theories
    Zupnik, B
    [J]. SUPERSYMMETRIES AND QUANTUM SYMMETRIES, 1999, 524 : 116 - 123
  • [28] Three-dimensional gauge theories and monopoles
    Chalmers, G
    Hanany, A
    [J]. NUCLEAR PHYSICS B, 1997, 489 (1-2) : 223 - 244
  • [29] Duality of three-dimensional superfield theories
    Ferrari, A. F.
    Gomes, M.
    Nascimento, J. R. S.
    Petrov, A. Yu.
    da Silva, A. J.
    [J]. PHYSICAL REVIEW D, 2006, 73 (10):
  • [30] Metriclike formulation of the spin-3 gravity in three dimensions
    Guo, Zhi-Qiang
    [J]. PHYSICAL REVIEW D, 2014, 90 (12):