Bidirectional frequency tuning of a piezoelectric energy converter based on a cantilever beam

被引:102
|
作者
Eichhorn, C. [1 ]
Goldschmidtboeing, F. [1 ]
Woias, P. [1 ]
机构
[1] Univ Freiburg, Dept Mictrosyst Engn IMTEK, D-7800 Freiburg, Germany
关键词
D O I
10.1088/0960-1317/19/9/094006
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A piezoelectric energy converter is presented, whose resonance frequency can be tuned by applying mechanical stress to its structure. The converter consists of a piezo-polymer cantilever beam with two additional thin arms, which are used to apply an axial preload to the tip of the beam. The compressive or tensile prestress applied through the arms leads to a shift of the beam's resonance frequency. Experiments with this structure indicate a high potential: the resonance frequency of a harvester to which a compressive preload was applied could be altered from 380 Hz to 292 Hz. In another experiment, a harvester with stiffened arms was tuned from 440 Hz to 460 Hz by applying a tensile preload. In combination with automatic control of the applied force, this type of structure could be used to enhance the performance of energy harvesters in vibrating environments with occasional shifts of the vibrational frequency.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Mechanically coupled cantilever beam structure for piezoelectric energy harvesting
    Batra, Nitika
    Deol, Rajinder Singh
    Singh, Madhusudan
    Mitra, Bhaskar
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2023, 33 (03)
  • [22] Research and analysis of an energy harvester of piezoelectric cantilever beam based on nonlinear magnetic action
    Gu, Xiangfeng
    He, Lipeng
    Yu, Gang
    Liu, Lei
    Zhou, Jianwen
    Cheng, Guangming
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (01):
  • [23] Design and Simulation of Piezoelectric Cantilever Beam Based on Mechanical Vibration for Energy Harvesting Application
    Uddin, Md. Naim
    Islam, Md. Shabiul
    Sampe, Jahariah
    Ali, Sawal H. Md
    Bhuyan, M. S.
    2016 INTERNATIONAL CONFERENCE ON INNOVATIONS IN SCIENCE, ENGINEERING AND TECHNOLOGY (ICISET 2016), 2016,
  • [24] Piezoelectric energy harvesting from highly flexible cantilever beam
    Fallahpasand, Sam
    Dardel, Morteza
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART K-JOURNAL OF MULTI-BODY DYNAMICS, 2019, 233 (01) : 71 - 92
  • [25] A MEMS Piezoelectric Cantilever Beam Array for Vibration Energy Harvesting
    Zhao, Xingqiang
    Wen, Zhiyu
    Deng, Licheng
    Luo, Guoxi
    Shang, Zhengguo
    Li, Dongling
    MICRO-NANO TECHNOLOGY XIV, PTS 1-4, 2013, 562-565 : 1052 - 1057
  • [26] Design and Optimization of Piezoelectric Cantilever Beam Vibration Energy Harvester
    Xu, Qiuyu
    Gao, Anran
    Li, Yigui
    Jin, Yan
    MICROMACHINES, 2022, 13 (05)
  • [27] Innovative Piezoelectric Cantilever Beam Shape for Improved Energy Harvesting
    Mehdipour, Iman
    Braghin, Francesco
    SHOCK & VIBRATION, AIRCRAFT/AEROSPACE, AND ENERGY HARVESTING, VOL 9, 2015, : 19 - 24
  • [28] Research on Low-Frequency Multi-Directional Piezoelectric Energy Harvester with Combined Cantilever Beam
    Ren, Qingying
    Liu, Yuxuan
    Wang, Debo
    CHINESE JOURNAL OF ELECTRONICS, 2025, 34 (01) : 156 - 164
  • [29] Research on Low-Frequency Multi-Directional Piezoelectric Energy Harvester with Combined Cantilever Beam
    Qingying Ren
    Yuxuan Liu
    Debo Wang
    Chinese Journal of Electronics, 2025, 34 (01) : 156 - 164
  • [30] Modelling of Cantilever Based on Piezoelectric Energy Harvester
    Rahim, N. F.
    Ong, N. R.
    Aziz, M. H. A.
    Alcain, J. B.
    Haimi, W. M. W. N.
    Sauli, Z.
    3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017), 2017, 1885