共 50 条
Applications of magnetic resonance elastography to healthy and pathologic skeletal muscle
被引:111
|作者:
Ringleb, Stacie I.
Bensamoun, Sabine F.
Chen, Qingshan
Manduca, Armando
An, Kai-Nan
Ehman, Richard L.
机构:
[1] Mayo Clin, Coll Med, Dept Radiol, Rochester, MN 55905 USA
[2] Mayo Clin, Coll Med, Div Orthoped Res, Biomech Lab, Rochester, MN USA
关键词:
magnetic resonance;
elastography;
skeletal muscle;
elastic properties;
biomechanics;
shear stiffness;
D O I:
10.1002/jmri.20817
中图分类号:
R8 [特种医学];
R445 [影像诊断学];
学科分类号:
1002 ;
100207 ;
1009 ;
摘要:
Magnetic resonance elastography (MRE) is capable of noninvasively quantifying the mechanical properties of skeletal muscles in vivo: This information can be clinically useful to understand the effects of pathologies on the mechanical properties of muscle and to quantify the effects of treatment. Advances in inversion algorithms quantify muscle anistropy in two-dimensional (2D) and three-dimensional (3D) imaging. Databases of the shear stiffness of skeletal muscle have been presented in the relaxed and contracted states in the upper extremity (biceps brachii, flexor digitorum profundus, and upper trapezius), distal leg muscle (tibialis anterior, medial gastrocnemius, lateral gastrocnemius, and trapezius), and proximal leg muscles (vastus lateralis, vastus medialis, and sartorius). MRE measurements have successfully validated a mathematical model of skeletal muscle behavior in the biceps brachii, correlated to electromyographic data in the distal leg muscles and quantified the effects of pathologies on the distal and proximal leg muscles. Future research efforts should be directed toward improving one-dimensional (1D) and 3D MRE data acquisition and image;processing, tracking the effects of treatment on pathologic muscle and correlating the shear stiffness with clinical measurements.
引用
收藏
页码:301 / 309
页数:9
相关论文