Using deep learning for dermatologist-level detection of suspicious pigmented skin lesions from wide-field images

被引:81
|
作者
Soenksen, Luis R. [1 ,2 ,3 ,4 ,5 ]
Kassis, Timothy [6 ]
Conover, Susan T. [2 ]
Marti-Fuster, Berta [2 ,5 ]
Birkenfeld, Judith S. [2 ,5 ]
Tucker-Schwartz, Jason [2 ,5 ]
Naseem, Asif [2 ,5 ]
Stavert, Robert R. [7 ,8 ,9 ]
Kim, Caroline C. [10 ,11 ]
Senna, Maryanne M. [9 ,12 ]
Aviles-Izquierdo, Jose [13 ]
Collins, James J. [2 ,3 ,4 ,6 ,14 ,15 ]
Barzilay, Regina [16 ,17 ]
Gray, Martha L. [2 ,4 ,5 ,17 ]
机构
[1] MIT, Dept Mech Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Inst Med Engn & Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Harvard Univ, Wyss Inst Biol Inspired Engn, 3 Blackfan Cir, Boston, MA 02115 USA
[4] Harvard MIT Program Hlth Sci & Technol, Cambridge, MA 02139 USA
[5] MIT Cambridge, MIT LinQ, Cambridge, MA 02148 USA
[6] MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[7] Cambridge Hlth Alliance, Div Dermatol, 1493 Cambridge St, Cambridge, MA 02139 USA
[8] Beth Israel Deaconess Med Ctr, Dept Dermatol, 330 Brookline Ave, Boston, MA 02215 USA
[9] Harvard Med Sch, Dept Dermatol, 25 Shattuck St, Boston, MA 02115 USA
[10] Newton Wellesley Dermatol Associates, Pigmented Les Program, 65 Walnut St Suite 520, Wellesley Hills, MA 02481 USA
[11] Tufts Med Ctr, Dept Dermatol, 260 Tremt St Biewend Bldg, Boston, MA 02116 USA
[12] Massachusetts Gen Hosp, Dept Dermatol, 55 Fruit St, Boston, MA 02114 USA
[13] Hosp Gen Univ Gregorio Maranon, Dept Dermatol, Calle Dr Esquerdo 46, Madrid 28007, Spain
[14] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[15] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[16] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[17] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02148 USA
关键词
UGLY-DUCKLING SIGN; PRIMARY-CARE PHYSICIANS; CUTANEOUS MELANOMA; DECISION-SUPPORT; CANCER; DERMOSCOPY; DIAGNOSIS; CLASSIFICATION; SYSTEM; US;
D O I
10.1126/scitranslmed.abb3652
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
A reported 96,480 people were diagnosed with melanoma in the United States in 2019, leading to 7230 reported deaths. Early-stage identification of suspicious pigmented lesions (SPLs) in primary care settings can lead to improved melanoma prognosis and a possible 20-fold reduction in treatment cost. Despite this clinical and economic value, efficient tools for SPL detection are mostly absent. To bridge this gap, we developed an SPL analysis system for wide-field images using deep convolutional neural networks (DCNNs) and applied it to a 38,283 dermatological dataset collected from 133 patients and publicly available images. These images were obtained from a variety of consumer-grade cameras (15,244 nondermoscopy) and classified by three board-certified dermatologists. Our system achieved more than 90.3% sensitivity (95% confidence interval, 90 to 90.6) and 89.9% specificity (89.6 to 90.2%) in distinguishing SPLs from nonsuspicious lesions, skin, and complex backgrounds, avoiding the need for cumbersome individual lesion imaging. We also present a new method to extract intrapatient lesion saliency (ugly duckling criteria) on the basis of DCNN features from detected lesions. This saliency ranking was validated against three board-certified dermatologists using a set of 135 individual wide-field images from 68 dermatological patients not included in the DCNN training set, exhibiting 82.96% (67.88 to 88.26%) agreement with at least one of the top three lesions in the dermatological consensus ranking. This method could allow for rapid and accurate assessments of pigmented lesion suspiciousness within a primary care visit and could enable improved patient triaging, utilization of resources, and earlier treatment of melanoma.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Detection and classification of red lesions from retinal images for diabetic retinopathy detection using deep learning models
    Saranya, P.
    Pranati, R.
    Patro, Sneha Shruti
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (25) : 39327 - 39347
  • [22] Recent Advances in Diagnosis of Skin Lesions Using Dermoscopic Images Based on Deep Learning
    Nie, Yali
    Sommella, Paolo
    Carratu, Marco
    Ferro, Matteo
    O'Nils, Mattias
    Lundgren, Jan
    IEEE ACCESS, 2022, 10 : 95716 - 95747
  • [23] Image-level Tortuosity Estimation in Wide-field Retinal Images from Infants with Retinopathy of Prematurity
    Poletti, Enea
    Grisan, Enrico
    Ruggeri, Alfredo
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 4958 - 4961
  • [24] Automated nonperfusion area segmentation on wide-field optical coherence tomography angiography using deep learning
    Guo, Yukun
    Hormel, Tristan
    Gao, Liqin
    Wang, Bingjie
    Hwang, Thomas S.
    Jia, Yali
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (07)
  • [25] Benign/Malignant Skin Melanoma Detection from Dermoscopy Images using Lightweight Deep Transfer Learning
    Vijayakumar, K.
    Maziz, Mohammad Nazmul Hasan
    Ramadasan, Swaetha
    Balaji, G.
    Prabha, S.
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [26] Detection of Monkeypox from skin lesion images using deep learning networks and explainable artificial intelligence
    Nayak, Tushar
    Chadaga, Krishnaraj
    Sampathila, Niranjana
    Mayrose, Hilda
    Bairy, G. Muralidhar
    Prabhu, Srikanth
    Katta, Swathi S.
    Umakanth, Shashikiran
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2023, 31 (01):
  • [27] Detection of Rust from Images in Pipes Using Deep Learning
    Oyama, Akira
    Sato, Hiroto
    Kosuge, Kaito
    Uchiyama, Kosuke
    Nakamura, Taro
    Umeda, Kazunori
    2021 18TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS (UR), 2021, : 476 - 479
  • [28] Litter Detection from Digital Images Using Deep Learning
    Liu J.
    Pan C.
    Yan W.Q.
    SN Computer Science, 4 (2)
  • [29] DL-SI-DHM: a deep network generating the high-resolution phase and amplitude images from wide-field images
    Meng, Zhang
    Pedrini, Giancarlo
    Lv, Xiaoxu
    Ma, Jun
    Nie, Shouping
    Yuan, Caojin
    OPTICS EXPRESS, 2021, 29 (13) : 19247 - 19261
  • [30] Mask Detection From Face Images Using Deep Learning and Transfer Learning
    Ornek, Ahmet Haydar
    Celik, Mustafa
    Ceylan, Murat
    2021 15TH TURKISH NATIONAL SOFTWARE ENGINEERING SYMPOSIUM (UYMS), 2021, : 113 - 116