Using deep learning for dermatologist-level detection of suspicious pigmented skin lesions from wide-field images

被引:81
|
作者
Soenksen, Luis R. [1 ,2 ,3 ,4 ,5 ]
Kassis, Timothy [6 ]
Conover, Susan T. [2 ]
Marti-Fuster, Berta [2 ,5 ]
Birkenfeld, Judith S. [2 ,5 ]
Tucker-Schwartz, Jason [2 ,5 ]
Naseem, Asif [2 ,5 ]
Stavert, Robert R. [7 ,8 ,9 ]
Kim, Caroline C. [10 ,11 ]
Senna, Maryanne M. [9 ,12 ]
Aviles-Izquierdo, Jose [13 ]
Collins, James J. [2 ,3 ,4 ,6 ,14 ,15 ]
Barzilay, Regina [16 ,17 ]
Gray, Martha L. [2 ,4 ,5 ,17 ]
机构
[1] MIT, Dept Mech Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Inst Med Engn & Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Harvard Univ, Wyss Inst Biol Inspired Engn, 3 Blackfan Cir, Boston, MA 02115 USA
[4] Harvard MIT Program Hlth Sci & Technol, Cambridge, MA 02139 USA
[5] MIT Cambridge, MIT LinQ, Cambridge, MA 02148 USA
[6] MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[7] Cambridge Hlth Alliance, Div Dermatol, 1493 Cambridge St, Cambridge, MA 02139 USA
[8] Beth Israel Deaconess Med Ctr, Dept Dermatol, 330 Brookline Ave, Boston, MA 02215 USA
[9] Harvard Med Sch, Dept Dermatol, 25 Shattuck St, Boston, MA 02115 USA
[10] Newton Wellesley Dermatol Associates, Pigmented Les Program, 65 Walnut St Suite 520, Wellesley Hills, MA 02481 USA
[11] Tufts Med Ctr, Dept Dermatol, 260 Tremt St Biewend Bldg, Boston, MA 02116 USA
[12] Massachusetts Gen Hosp, Dept Dermatol, 55 Fruit St, Boston, MA 02114 USA
[13] Hosp Gen Univ Gregorio Maranon, Dept Dermatol, Calle Dr Esquerdo 46, Madrid 28007, Spain
[14] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[15] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[16] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[17] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02148 USA
关键词
UGLY-DUCKLING SIGN; PRIMARY-CARE PHYSICIANS; CUTANEOUS MELANOMA; DECISION-SUPPORT; CANCER; DERMOSCOPY; DIAGNOSIS; CLASSIFICATION; SYSTEM; US;
D O I
10.1126/scitranslmed.abb3652
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
A reported 96,480 people were diagnosed with melanoma in the United States in 2019, leading to 7230 reported deaths. Early-stage identification of suspicious pigmented lesions (SPLs) in primary care settings can lead to improved melanoma prognosis and a possible 20-fold reduction in treatment cost. Despite this clinical and economic value, efficient tools for SPL detection are mostly absent. To bridge this gap, we developed an SPL analysis system for wide-field images using deep convolutional neural networks (DCNNs) and applied it to a 38,283 dermatological dataset collected from 133 patients and publicly available images. These images were obtained from a variety of consumer-grade cameras (15,244 nondermoscopy) and classified by three board-certified dermatologists. Our system achieved more than 90.3% sensitivity (95% confidence interval, 90 to 90.6) and 89.9% specificity (89.6 to 90.2%) in distinguishing SPLs from nonsuspicious lesions, skin, and complex backgrounds, avoiding the need for cumbersome individual lesion imaging. We also present a new method to extract intrapatient lesion saliency (ugly duckling criteria) on the basis of DCNN features from detected lesions. This saliency ranking was validated against three board-certified dermatologists using a set of 135 individual wide-field images from 68 dermatological patients not included in the DCNN training set, exhibiting 82.96% (67.88 to 88.26%) agreement with at least one of the top three lesions in the dermatological consensus ranking. This method could allow for rapid and accurate assessments of pigmented lesion suspiciousness within a primary care visit and could enable improved patient triaging, utilization of resources, and earlier treatment of melanoma.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Computer-aided classification of suspicious pigmented lesions using wide-field images
    Birkenfeld, Judith S.
    Tucker-Schwartz, Jason M.
    Soenksen, Luis R.
    Aviles-Izquierdo, Jose A.
    Marti-Fuster, Berta
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 195
  • [2] Skin cancer classification dermatologist-level based on deep learning model
    Albawi, Saad
    Arif, Muhanad Hameed
    Waleed, Jumana
    ACTA SCIENTIARUM-TECHNOLOGY, 2023, 45
  • [3] Deep Learning-Based Segmentation of Lesions from Wide-Field Vitiligo Images
    Fan, Zhuangzhuang
    Wang, Changqing
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (10)
  • [4] DEEP LEARNING FOR AUTOMATIC CELL DETECTION IN WIDE-FIELD MICROSCOPY ZEBRAFISH IMAGES
    Dong, Bo
    Shao, Ling
    Da Costa, Marc
    Bandmann, Oliver
    Frangi, Alejandro F.
    2015 IEEE 12TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2015, : 772 - 776
  • [5] Deep Learning Algorithms for the Detection of Suspicious Pigmented Skin Lesions in Primary Care Settings: A Systematic Review and Meta-Analysis
    Abdalla, Ahmed R.
    Hageen, Ahmed W.
    Saleh, Haneen H.
    Al-Azzawi, Omar
    Ghalab, Mahmoud
    Harraz, Amani
    Eldoqsh, Bola S.
    Elawady, Fatma E.
    Alhammadi, Ayman H.
    Elmorsy, Hesham Hassan
    Jano, Majd
    Elmasry, Mohamed
    Bahbah, Eshak I.
    Elgebaly, Ahmed
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (07)
  • [6] The Development of a Skin Cancer Classification System for Pigmented Skin Lesions Using Deep Learning
    Jinnai, Shunichi
    Yamazaki, Naoya
    Hirano, Yuichiro
    Sugawara, Yohei
    Ohe, Yuichiro
    Hamamoto, Ryuji
    BIOMOLECULES, 2020, 10 (08) : 1 - 13
  • [7] Signal denoising of viral particle in wide-field photon scattering parametric images using deep learning
    Zhao, Hanwen
    Ni, Bin
    Liu, Weiping
    Jin, Xiao
    Zhang, Heng
    Gao, Xiaohong W.
    Wen, Xuesong
    Shi, Daming
    Dong, Lei
    Xiong, Jichuan
    Liu, Xuefeng
    OPTICS COMMUNICATIONS, 2022, 503
  • [8] Deep Learning-based Diagnosis of Glaucoma Using Wide-field Optical Coherence Tomography Images
    Shin, Younji
    Cho, Hyunsoo
    Jeong, Hyo Chan
    Seong, Mincheol
    Choi, Jun-Won
    Lee, Won June
    JOURNAL OF GLAUCOMA, 2021, 30 (09) : 803 - 812
  • [9] Anomaly Detection for Wide-Field Images Using Gaze Prediction Module
    Goto K.
    Aizawa H.
    Kato K.
    Harada Y.
    Noguchi M.
    Nishikawa H.
    Kashimura K.
    Hamaya A.
    Ohira T.
    Ihara M.
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2021, 87 (12): : 1008 - 1012
  • [10] Dermatologist-Level Classification of Skin Cancer Using Cascaded Ensembling of Convolutional Neural Network and Handcrafted Features Based Deep Neural Network
    Sharma, Akhilesh Kumar
    Tiwari, Shamik
    Aggarwal, Gaurav
    Goenka, Nitika
    Kumar, Anil
    Chakrabarti, Prasun
    Chakrabarti, Tulika
    Gono, Radomir
    Leonowicz, Zbigniew
    Jasinski, Michal
    IEEE ACCESS, 2022, 10 : 17920 - 17932